DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Bearbeitung von Matthias Wallnofer

Naming

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Names, |dentifiers, And Addresses

Properties of a true identifier:
* An identifier refers to at most one entity.

* Each entity is referred to by at most one
identifier.

* An identifier always refers to the same
entity

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Forwarding Pointers (1)

Invocation
request is

sent to object XY—D\
PN
p A

Server stub at object's
current process returns
the current location

(@)

Figure 5-2. Redirecting a forwarding pointer by
storing a shortcut in a client stub (RMI).

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Forwarding Pointers (2)

Server stub is no
longer referenced

by any client stub \XY E

) ~ »
Client stub sets
a shortcut

(b)

Figure 5-2. Redirecting a forwarding pointer by
storing a shortcut in a client stub.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Home-Based Approaches

Host's home

Ioca'tic:rn 1. Send pacEet to host at its home

L Il T

W 2

2. Retum address hr
of current location 63
Client's
=0 location

™Y 3. Tunnel packet to
Amcurrent location

4. Send successive packets

to current location Cf?b
Host's present location

Figure 5-3. The principle of Mobile IP (IPv6 extension).

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Distributed Hash Tables

General Mechanism

114 | Finger table
2 [4
319 W
419 3
5118 <
Actual node i o
5
R)
11 18 2|3
g ?1 /:@{ 4 |14
A af K e P W T
5 4 Resolve k = 12 FoOny
= | \
26 from node 28 ! | 6
/ ‘. \
25] {7
il v d
24 N8 AT
k N 2 |l
F|gure 5'4 23 Resolve k = 26 P 3 2
. S from node 1 © 5 [28
Resolving key o & o
2 [28 . S——
26 from node 1 3128 - ﬁﬁ\g i
5 9 / 12‘
o 420
and key 12 from it :

($1ENTAT VI BN
—
-4
I
(o)
s
o
A
/ :_L
B
®
n
®

node 28 in a KD
Chord system. m RE:
4 |28
5 | 4

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Hierarchical Approaches (1)

The root directory

node dir(T) JGRslEvEl

domain T

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
/ (S is contained in T)

T e — T — T ——— | — - — | - — - _—— e — — — — -

A leaf domain, contained in S

Figure 5-5. Hierarchical organization of a location service into
domains, each having an associated directory node.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Hierarchical Approaches (2)

Node knows
about E, so request
Node has no is forwarded to child
record for E, so @ _
that request is M
forwarded to T e @ !
parent | e

I'
3‘1

Look- up

|
: Domain D
request |

Figure 5-7. Looking up a location in a hierarchically
organized location service.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Name Spaces

Data stored in n1 no

n2: "elke" home keys

n3: "max” '/keys"

nd: ‘steen i no "/home/steen/keys"
elkﬂx \teen

n4 keys
Leaf node O @
\ mbox

fwmrc

Directory node

O "/home/steen/mbox"

Figure 5-9. A general naming graph with a single root node.
nS is an inode which is referenced two times — hard link

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Linking and Mounting (1)

Data stored in n1 no
n2: "elke" home keys
n3: "max"
n4: "steen” nt n5) "/keys"
elke/” . \teen

Leaf node O
twmrc / mbox keys
Directory node

O "/home/steen/keys"

Figure 5-11. The concept of a symbolic link
explained in a naming graph.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Linking and Mounting (2)

Name server Name server for foreign name space
\ Machine A \ Machine B

remote/ X; home / \O
/éxu ("nfs://flits.cs.vu.nl//home/steen"] /é\iteen
COL ®

0S

/] Network
Reference to foreign name space

Figure 5-12. Mounting remote name spaces
through a specific access protocol (NFS).

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Linking and Mounting (3)

Information required to mount a foreign
name space in a distributed system

* The name of an access protocol.

° ne name of the server.

. ne name of the mounting point in the
foreign name space.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Name Space Distribution

P ¥ Y 4 P —

A A
{\
|
I

1 : /, \‘
i | L)
| = == 1 A 7/
At &eng ;CS\ eng jack¥ \ jill keio ¢ vL nec /,,%_‘(;‘s
trational o v
layer C Www
diy i ¥ Yoo [Py "
___________ pc24 ¥ ____________‘:_:,#:::,;_’
irobot -~ pub ¥~
___ bs \\\
’ lob !
Mana- glo e+ \‘.
gerial [!
Zone \ /
layer index.txt % Y

Figure 5-13. An example partitioning of the DNS name space,
including Internet-accessible files, into three layers.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Implementation of Name Resolution (1)

‘1. <nl,vu,cs,ftp> A Root
2. #<nl>, <vu,cs,ftp> Rallls setvar | L \ il
3' <VU:CS|ftp>) Name saver | 000 T
< :
Client's 4. #<vu>, <cs,ftp> alnoge | Lo :
pname | Y_L_lé \
resolver | 5. <Cs.,ftp> »| Name server !
<« vu node E
6. #<cs>, <ftp> l
______ CS| ...
alis »| Name server §
<8 #<iip> cs node

ftp / \
<nl,vu,cs,ftp> T l#<n|,VU=CSﬁP> Nodes are / 5
managed by g O Q §

the same server -5 '

Figure 5-15. The principle of iterative name resolution.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Implementation of Name Resolution (2)

Client's
name
resolver

1. <nl,vu,cs,ftp>

8. #<nl,vu,cs,ftp>

Root
name server

7. #<vu,cs,ftp>

Name server
nl node

DZ. <vu,cs,ftp>

6. #<cs,ftp><

Name server
vu node

DS. <cs,ftp>

5. #<ftp>C

Name server
CcsS node

>4. <ftp>

<nl,vu,cs,ftp> T ¢#<nl,vu,cs,ftp>

Figure 5-16. The principle of recursive name resolution.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Example: The Domain Name System

Recursive name resolution

Name server
nl node

R2

Name server

Client vu node

R3

Name server
cs node

RARNA

Ilterative name resolution

Long-distance communication
< '

Figure 5-18. The comparison between recursive and iterative
name resolution with respect to communication costs.
Usually the iterative variant preferred over the recursive one,
to keep server load low.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

The DNS Name Space

Type of | Associated Description

record entity

SOA Zone Holds information on the represented zone

£ Host Contains an |IP address of the host this node represents

MX Domain Refers to a mail server to handle mail addressed to this node
SRV Domain Refers to a server handling a specific service

NS Zone Refers to a name server that implements the represented zone
CNAME | Node Symbolic link with the primary name of the represented node
PTR Host Contains the canonical name of a host

HINFO Host Holds information on the host this node represents

TXT Any kind Contains any entity-specific information considered useful

Figure 5-19. The most important types of resource records
forming the contents of nodes in the DNS name space.

Tanenbaiim & Van Steen Di<tribiited Svetemes:

Princinlecs and Paradiames e (c) 2007

DNS Implementation

ftp.cs.vu.nl. CNAME soling.cs.vu.nl.
www.cs.vu.nl. CNAME soling.cs.vu.nl.
soling.cs.vu.nl. A 130.37.20.20
soling.cs.vu.nl. MX 1 soling.cs.vu.nl.
soling.cs.vu.nl. MX 666 zephyr.cs.vu.nl.
soling.cs.vu.nl. HINFO "Sun” "Unix"
vucs-dasi.cs.vu.nl. PTR 0.198.37.130.in-addr.arpa.
vucs-dasi.cs.vu.nl. A 130.37.198.0
inkt.cs.vu.nl. HINFO "OCE" "Proprietary"
inkt.cs.vu.nl. A 192.168.4.3
pen.cs.vu.nl. HINFO "OCE" "Proprietary"
pen.cs.vu.nl. A 192.168.4.2
localhost.cs.vu.nl. A 127:0.0.1

Figure 5-20. An excerpt from the DNS
database for the zone cs.vu.nl.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Hierarchical Implementations: LDAP (1)

C=NL

A {= Vrije Universiteit
-~

OU = Comp. Sc.

e

CN = Main server
v \ .

Host_Name = star / Host_Name = zephyr

Figure 5-23. (a) Part of a directory information tree.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Hierarchical Implementations: LDAP (2)

Attribute Abbr. Value
Country C NL
Locality L Amsterdam
Organization O Vrije Universiteit
OrganizationalUnit | OU Comp. Sc.
CommonName CN Main server
Mail _Servers — 137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server — 130.37.20.20
WWW _Server — 130.37.20.20

Figure 5-22. A simple example of an LDAP
directory entry using LDAP naming conventions.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Hierarchical Implementations: LDAP (3)

Attribute Value Attribute Value
Country NL Country NL
Locality Amsterdam Locality Amsterdam
Organization Vrije Universiteit Organization Vrije Universiteit
OrganizationalUnit| Comp. Sc. OrganizationalUnit| Comp. Sc.
CommonName Main server CommonName Main server
Host_Name star Host_Name zephyr
Host_Address 192.31.231.42 Host_Address 137.37.20.10

(b)

Figure 5-23. (b) The two Host (Host Name) directory entries

Tanenbaiim & Van Steen Di<tribiited Svetemes:

Princinlecs and Paradiames e (c) 2007

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Bearbeitung von Matthias Wallnofer

Synchronization

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Clock Synchronization

Computer on 2144 2145 2146 2147 <4— Time according
which compiler ¢ % ! ! to local clock
runs output.o created

Computer on 2142 2143 2144 2145 <«— Time according
which editor | ® | | to local clock

runs
output.c created

Figure 6-1. When each machine has its own clock, an
event that occurred after another event may
nevertheless be assigned an earlier time.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Physical Clocks (1)

Earth's orbit

A transit of the sun
occurs when the
sun reaches the
highest point of

the day

At the transit of the sun

n days later, the earth

has rotated fewer
than 360°

Earth on day O at the
transit of the sun

To distant galaxy

To distant galaxy

Earth on day n at the
transit of the sun

Figure 6-2. Computation of the mean solar day.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Physical Clocks (2)

0 1 2 3 45 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25
A "+ttt

| | l | | |
I | I I I I 1 [I I [I I I I I

Solar O 1 2 34 5 6 7 8 9 11 12 131415 16 17 18 19 2122 23 24 25

seconds \ /(

Leap seconds introduced into UTC to
get it in synch with TAl

Figure 6-3. TAIl seconds are of constant length (precision 10-1°),
unlike solar seconds. Leap seconds are introduced when
necessary to keep in phase with the sun.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Clock Synchronization Algorithms

Clock time, C

O
20

x
S

dC

o]

dt dC

UTC, t

Figure 6-5. The relation between clock time and UTC
when clocks tick at different rates.

Tanenbaiim & Van Steen Di<tribiited Svetemes:

Princinlecs and Paradiames e (c) 2007

Network Time Protocol
Cristian’s Algorithm

dTreq dTyes

Figure 6-6. Getting the current time from a time server.
Accuracy: 10 ms, in LAN also < 1ms

T,-T, = round-trip time (RTT)

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

The Berkeley Algorithm (1)

Time daemon
3:00 /300

3:00 @
(| \3:00

Figure 6-7. (a) The time Network |

daemon asks all the other

machines for their clock

values.
2:50 3:25
(@)

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

The Berkeley Algorithm (2)

3:00 0

105 €)
‘ +25
Figure 6-7.
(b) The machines answer.
The time server also

observes the various
round-trip times 2:90 3:25

(RTT). (b)

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

The Berkeley Algorithm (3)

3:05 +5

+15 @
[w-zo
Figure 6-7. (c) The time
daemon tells everyone how
to adjust their clock. @ @
The value is

determined by the 3-05 3-05
average time skew. (©)

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Lamport’'s Logical Clocks (1)

The "happens-before” relation — can be
observed directly in two situations:

* |f @aand b are events in the same process,
and a occurs before b, then a — b is true.

* |f ais the event of a message being sent by
one process, and b is the event of the
message being received by another
process, thena— b

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Lamport’s Logical Clocks (2)

P, P, P,

Figure 6-9. (a) Three processes, each with its own clock.
The clocks run at different rates.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Lamport’s Logical Clocks (3)

P, P, P
0 0 0
6 m; |8 (10
3] i 20
18 541 __m, [30
54 El)
30 |P2 adjusts | 40 50

36 | its clock |48

....... O
42 S me |70

....... 61 3 |0
48 69 80
o™ |77 %
76 | p; adjusts L85 100
its clock
(b)

Figure 6-9. (b) Lamport’s algorithm corrects the clocks.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Lamport's Logical Clocks (4)

Updating counter C, for process P,

1. Before executing an event P, executes
C—C +1.

2. When process P, sends a message m to P, it sets

m’s timestamp s (m) equal to C, after having
executed the previous step.

3. Upon the receipt of a message m, process P,
adjusts its own local counter as
C, < max{C, , ts (m)}, after which it then executes
the first step and delivers the message to the
application.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Problem: Totally Ordered Multicasting

% Ypdater SREAg S i

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

Figure 6-11. Updating a replicated database at the same time and
leaving it in an inconsistent state.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Vector Clocks (1)

Vector clocks are constructed by letting each
process P, maintain a vector VC, with the

following two properties:
1. VC,[i]Iis the number of (sending) events that
nave occurred so far at P.. In other words, VC,
1] s the local logical clock at process P, .

2. IfVC,[j]=kthen P, knows that k events have
occurred at P;. It is thus P/s knowledge of the
local time at P, .

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Vector Clocks (2)

VCO— (1,0,0) VC,=(1,1,0) v
0 I
P.! | “:
v / e
VG, =(1.1,0) VC,=(1,1,0) v
P, I I I

VC,=(8,00)! VC,=(1,0,0) v

Observation: We can now ensure that a message is delivered only if all causally
preceding messages have already been delivered.

Adjustment: P; increments V(;[i] only when sending a message, and P; only
adjusts VC; when receiving a message (i.e., does not increment VC;lj].

P; postpones delivery of m until:
o ts(m)[i] = V(;[i] + 1 and P, (source) — P, (destination)
o ts(m)[k] < VCj|k]| for k #i.

Tanenbaiim & Van Steen Di<tribiited Svetemes<: Princinles and Paradiames e (c) 2007

Mutual Exclusion
A Centralized Algorithm (1)

@@@

Request L
/ Queue Is
empt
Coordinator Py

(@)

Figure 6-14. (a) Process 1 asks the coordinator for permission to
access a shared resource. Permission is granted.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Mutual Exclusion
A Centralized Algorithm (2)

OO

Request

/ No reply
Olr

()

Figure 6-14. (b) Process 2 then asks permission to access the
same resource. The coordinator does not reply.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Mutual Exclusion
A Centralized Algorithm (3)

OJOXO

Release
OK

(C)

Figure 6-14. (c) When process 1 releases the resource, it tells the
coordinator, which then replies to 2.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

A Distributed Algorithm (1)

Three different cases:

1. If the receiver is not accessing the resource
and does not want to access it, it sends back
an OK message to the sender.

2. If the receiver already has access to the
resource, it simply does not reply. Instead, it
gueues the request.

3. If the receiver wants to access the resource as
well but has not yet done so, it compares the
timestamp of the incoming message with the
one contained in the message that it has sent
everyone. The lowest one wins.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

A Distributed Algorithm (2)

12

(@)

Figure 6-15. (a) Two processes want to access a
shared resource (1) at the same moment.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

A Distributed Algorithm (3)

Accesses
resource

(b)

Figure 6-15. (b) Process 0 has the lowest
timestamp, so it wins.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

A Distributed Algorithm (4)

OK
@ Accesses
resource

(C)

Figure 6-15. (c) When process 0 is done,
it sends an OK also, so 2 can now go ahead.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Election Algorithms

The Bully Algorithm

1. P sends an ELECTION message to all
processes with higher numbers.

2. If no one responds, P wins the election
and becomes coordinator.

3. If one of the higher-ups answers, it takes
over. P’'s job is done.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

The Bully Algorithm (1)

@9@ o O

® ®
OBENO

Previous coordinator
has crashed

(@) (b) ()

Election

Figure 6-20. The bully election algorithm. (a) Process 4 holds an
election. (b) Processes 5 and 6 respond, telling 4 to stop.
(c) Now 5 and 6 each hold an election.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

The Bully Algorithm (2)

Figure 6-20. The bully election algorithm. (d) Process 6 tells 5 to
stop. (e) Process 6 wins and tells everyone.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48

