
 
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 
Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DISTRIBUTED SYSTEMS
Principles and Paradigms

Second Edition
ANDREW S. TANENBAUM

MAARTEN VAN STEEN

Bearbeitung von Matthias Wallnöfer

Naming



 
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 
Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Names, Identifiers, And Addresses

Properties of a true identifier:
• An identifier refers to at most one entity.
• Each entity is referred to by at most one 

identifier.
• An identifier always refers to the same 

entity
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Forwarding Pointers (1)

Figure 5-2. Redirecting a forwarding pointer by 
storing a shortcut in a client stub (RMI).
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Forwarding Pointers (2)

Figure 5-2. Redirecting a forwarding pointer by 
storing a shortcut in a client stub.
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Home-Based Approaches

Figure 5-3. The principle of Mobile IP (IPv6 extension).
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Distributed Hash Tables
General Mechanism

Figure 5-4. 
Resolving key 
26 from node 1 
and key 12 from 
node 28 in a 
Chord system.
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Hierarchical Approaches (1)

Figure 5-5. Hierarchical organization of a location service into 
domains, each having an associated directory node.
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Hierarchical Approaches (2)

Figure 5-7. Looking up a location in a hierarchically 
organized location service.
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Name Spaces

Figure 5-9. A general naming graph with a single root node.
n5 is an inode which is referenced two times → hard link
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Linking and Mounting (1)

Figure 5-11. The concept of a symbolic link 
explained in a naming graph.
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Linking and Mounting (2)

Figure 5-12. Mounting remote name spaces 
through a specific access protocol (NFS).
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Linking and Mounting (3)

Information required to mount a foreign 
name space in a distributed system

• The name of an access protocol.
• The name of the server.
• The name of the mounting point in the 

foreign name space.
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Name Space Distribution

Figure 5-13. An example partitioning of the DNS name space, 
including Internet-accessible files, into three layers.
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Implementation of Name Resolution (1)

Figure 5-15. The principle of iterative name resolution.
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Implementation of Name Resolution (2)

Figure 5-16. The principle of recursive name resolution.
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Example: The Domain Name System

Figure 5-18. The comparison between recursive and iterative 
name resolution with respect to communication costs.

Usually the iterative variant preferred over the recursive one,
 to keep server load low.
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The DNS Name Space

Figure 5-19. The most important types of resource records 
forming the contents of nodes in the DNS name space.
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DNS Implementation

Figure 5-20. An excerpt from the DNS 
database for the zone cs.vu.nl.
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Hierarchical Implementations: LDAP (1)

Figure 5-23. (a) Part of a directory information tree. 
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Hierarchical Implementations: LDAP (2)

Figure 5-22. A simple example of an LDAP 
directory entry using LDAP naming conventions.
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Hierarchical Implementations: LDAP (3)

Figure 5-23. (b) The two Host (Host_Name) directory entries
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Synchronization
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Clock Synchronization

Figure 6-1. When each machine has its own clock, an 
event that occurred after another event may 

nevertheless be assigned an earlier time.
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Physical Clocks (1)

Figure 6-2. Computation of the mean solar day.
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Physical Clocks (2)

Figure 6-3. TAI seconds are of constant length (precision 10-16), 
unlike solar seconds. Leap seconds are introduced when 

necessary to keep in phase with the sun.



 
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 
Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Clock Synchronization Algorithms

Figure 6-5. The relation between clock time and UTC 
when clocks tick at different rates.
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Network Time Protocol
Cristian‘s Algorithm

Figure 6-6. Getting the current time from a time server.
Accuracy: 10 ms, in LAN also < 1ms

T4-T1 = round-trip time (RTT) 
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The Berkeley Algorithm (1)

Figure 6-7. (a) The time
daemon asks all the other 
machines for their clock
values. 



 
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 
Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

The Berkeley Algorithm (2)

Figure 6-7. 
(b) The machines answer. 

The time server also 
observes the various 
round-trip times 
(RTT).
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The Berkeley Algorithm (3)

Figure 6-7. (c) The time 
daemon tells everyone how 
to adjust their clock.

The value is 
determined by the 
average time skew.
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Lamport’s Logical Clocks (1)

The "happens-before" relation   →   can be 
observed directly in two situations:

• If a and b are events in the same process, 
and a occurs before b, then a → b is true.

• If a is the event of a message being sent by 
one process, and b is the event of the 
message being received by another 
process, then a → b
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Lamport’s Logical Clocks (2)

Figure 6-9. (a) Three processes, each with its own clock. 
The clocks run at different rates. 
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Lamport’s Logical Clocks (3)

Figure 6-9. (b) Lamport’s algorithm corrects the clocks.
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Lamport’s Logical Clocks (4)
Updating counter Ci for process Pi

1. Before executing an event Pi executes 
Ci ← Ci + 1.

2. When process Pi sends a message m to Pj, it sets 
m’s timestamp ts (m) equal to Ci after having 
executed the previous step.

3. Upon the receipt of a message m, process Pj 
adjusts its own local counter as 
Cj ← max{Cj , ts (m)}, after which it then executes 
the first step and delivers the message to the 
application.
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Problem: Totally Ordered Multicasting

Figure 6-11. Updating a replicated database at the same time and 
leaving it in an inconsistent state.
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Vector Clocks (1)

Vector clocks are constructed by letting each 
process Pi maintain a vector VCi with the 
following two properties:

1. VCi [ i ] is the number of (sending) events that 
have occurred so far at Pi. In other words, VCi 
[ i ] is the local logical clock at process Pi .

2. If VCi [ j ] = k then Pi knows that k events have 
occurred at Pj. It is thus Pi’s knowledge of the 
local time at Pj .
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Vector Clocks (2)

0

Pi (source) → Pj (destination)
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Mutual Exclusion
A Centralized Algorithm (1)

Figure 6-14. (a) Process 1 asks the coordinator for permission to 
access a shared resource. Permission is granted. 
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Mutual Exclusion
A Centralized Algorithm (2)

Figure 6-14. (b) Process 2 then asks permission to access the 
same resource. The coordinator does not reply. 
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Mutual Exclusion
A Centralized Algorithm (3)

Figure 6-14. (c) When process 1 releases the resource, it tells the 
coordinator, which then replies to 2.
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A Distributed Algorithm (1)
Three different cases:
1. If the receiver is not accessing the resource 

and does not want to access it, it sends back 
an OK message to the sender.

2. If the receiver already has access to the 
resource, it simply does not reply. Instead, it 
queues the request.

3. If the receiver wants to access the resource as 
well but has not yet done so, it compares the 
timestamp of the incoming message with the 
one contained in the message that it has sent 
everyone. The lowest one wins. 
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A Distributed Algorithm (2)

Figure 6-15. (a) Two processes want to access a 
shared resource (1) at the same moment. 
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A Distributed Algorithm (3)

Figure 6-15. (b) Process 0 has the lowest 
timestamp, so it wins. 
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A Distributed Algorithm (4)

Figure 6-15. (c) When process 0 is done, 
it sends an OK also, so 2 can now go ahead.
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Election Algorithms 

The Bully Algorithm
1. P sends an ELECTION message to all 

processes with higher numbers.
2. If no one responds, P wins the election 

and becomes coordinator.
3. If one of the higher-ups answers, it takes 

over. P’s job is done.
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The Bully Algorithm (1)

Figure 6-20. The bully election algorithm. (a) Process 4 holds an
 election. (b) Processes 5 and 6 respond, telling 4 to stop. 

(c) Now 5 and 6 each hold an election.
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The Bully Algorithm (2)

Figure 6-20. The bully election algorithm.  (d) Process 6 tells 5 to 
stop. (e) Process 6 wins and tells everyone.
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