DISTRIBUTED SYSTEMS
Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Bearbeitung von Matthias Wallnofer

Introduction and
Architectures

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Definition of a Distributed System (1)

A distributed system is:

A collection of independent
computers that appears to its
users as a single coherent
system.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Definition of a Distributed System (2)

Computer 1 Computer 2 Computer 3 Computer 4
1 |

Appl. A Application B Appl. C

1
Distributed system layer (middleware)

Local OS 1 Local OS 2 Local OS 3 Local OS 4
Network

Figure 1-1. A distributed system organized as middleware. The
middleware layer extends over multiple machines, and offers
each application the same interface.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Cluster Computing Systems

Master node Compute node Compute node Compute node
Management Component Component Component
application of of of
parallel parallel 00060 parallel
Parallel libs application application application
Local OS Local OS Local OS Local OS

Remote access E E S-teTn-de-ir.c'i -nc-et;var-k- -E
network D R

High-speed network

Figure 1-6. An example of a cluster (grid) computing system. Nodes
are homogeneous: same OS, near-identical hardware, Single
managing (= master) node

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Transparency in a Distributed System

Transparency Description

Access Hide differences in data representation and how a resource is accessed
Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource is replicated

Concurrency Hide that a resource may be shared by several competitive users
Failure Hide the failure and recovery of a resource

Figure 1-2. Different forms of transparency in a

distributed system (ISO, 1995).

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Scalability Problems

Concept

Example

Centralized services

A single server for all users

Centralized data

A single on-line telephone book

Centralized algorithms

Doing routing based on complete information

Figure 1-3. Examples of scalability limitations.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Scalability Problems

Characteristics of decentralized algorithms:

* No machine has complete information about
the system state.

* Machines make decisions based only on local
information.

* Failure of one or some machine(s) does not ruin
the algorithm (Byzantine fault tolerance).

* There is no implicit assumption that a global
clock exists.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Scaling Techniques (1)

Client Server
—
FIRST NAME [MAARTEN | W]
LAST NAME [VAN STEEN | @ —>
E-MAIL [STEEN@CSVUNL | [T]=> i]
[E]=>»
©] | M=
> 4 3
/!
Check form Process form
(a)
Client Server
FIRST NAME [MAARTEN | ope———
LAST NAME [VAN STEEN | > VAN STEEN SR Y
E-MAIL [STEEN@CS.VU.NL | STEEN@CS.VU.NL
B ¥
A b
Check form Process form

(b)

Figure 1-4. The difference between letting (a) a server
or (b) a client check forms as they are being filled.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Scaling Techniques (2)
}< Generic »{ }‘ Countries -

Figure 1-5. An example of dividing the DNS
name space into zones.
What if a single DNS server would handle everything?

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Pitfalls when Developing
Distributed Systems

False assumptions made by first time developer:
* The network is reliable.

* The network is secure.

* The network is homogeneous.

* The topology does not change.

* Latency is zero.

* Bandwidth is infinite.

 Transport cost is zero.

* There is one administrator.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Transaction Processing Systems (1)

Primitive Description
BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION | Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Figure 1-8. Example primitives for transactions (usually on
databases).

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Transaction Processing Systems (2)

Characteristic properties of transactions:

* Atomic: To the outside world, the transaction
happens indivisibly.

* Consistent: The transaction does not violate
system invariants.

 |solated: Concurrent transactions do not
Interfere with each other.

* Durable: Once a transaction commits, the
changes are permanent.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Transaction Processing Systems (3)

Nested transaction

Subtransaction Subtransaction

. OE

Airline database Hotel database

Two different (independent) databases

Figure 1-9. A nested (distributed) transaction.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Transaction Processing Systems (4)

Transaction

Server
Reply
Request
Requests
Request
Client d wor | | Server
application | l Tr Tenier <« |

Reply

Repl
Reply Server _@

Figure 1-10. The role of a TP monitor in distributed systems.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Distributed Pervasive Systems

Requirements for pervasive (=ad hoc)
systems

* Embrace contextual changes.
* Encourage ad hoc composition.
* Recognize sharing as the default.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Electronic Health Care Systems (1)

Questions to be addressed for health care systems:

* Where and how should monitored data be
stored? How can we prevent loss of data”?

* What infrastructure is needed to generate and
propagate alerts?

* How can physicians (= doctors) provide online
feedback?

* How can extreme robustness of the monitoring
system be realized?

* What are the security issues and how can the
proper policies be enforced?

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Electronic Health Care Systems (2)

External
storage

| GPRS/UMTS

ECG sénsor
PDA

\
Motion sepsors

body-area network body-area network

(@) (b)

Figure 1-12. Monitoring a person in a pervasive electronic health care system,
using (a) a local hub or (b) a continuous wireless connection.

Nowadays usually by means of smartphone/tablets and Bluetooth LE.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Architectural Styles (1)

Important styles of architecture for
distributed systems

* Layered architectures

* Object-based architectures
 Event-based architectures

* Data-centered architectures

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Architectural Styles (2)

Layer N
Layer N-1
Request | T Response
flow flow
v |
Layer 2
Layer 1

Figure 2-1. The (a) layered architectural style (RPC) and ...

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Architectural Styles (3)

Method call

(b)
Figure 2-1. (b) The object-based architectural style (RMI).

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Architectural Styles (4)

Component Component

Event delivery T T l
< Event bus >

T Publish

Component

(@)

Figure 2-2. (a) The event-based architectural style (MoM, ESB)
and ...

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Architectural Styles (5)

Component Component

Publish

Data delivery

Shared (persistent) data space

(b)

Figure 2-2. (b) The shared data-space architectural style
(TupleSpace, InMemory-Store, DB).

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Centralized Architectures

_ Wait for result
Client ——————s———— o __

Request

Provide service Time —>»

Figure 2-3. General interaction between a client and a server.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Structured Peer-to-Peer Architectures (1)

Actual node

-
=
+* .
L L]
0 i
% '
. F
-
o
-

145 (13,1415} {0,1} {2}
13} (3
{8,9,10,11,12} {2,3,4}
i Associated)
Akk data keys 50
Figure 2-7. The mapping of \ /
data items onto nodes in oo,

Chord. — a distributed 10\ . (567 55/
hash table (DHT) = /®/

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Structured Peer-to-Peer Architectures (2)

I

Figure 2-8. A Chord
system with the
finger table lookup
entries of node 5 gy

N\ /

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Unstructured Peer-to-Peer
Architectures

Observation: Many unstructured P2P systems attempt to maintain a random
graph:

Basic principle: Each node is required to be able to contact a randomly selected
other node:

@ Let each peer maintain a partial view of the network, consisting of ¢ other
nodes

@ Each node P periodically selects a node @ from its partial view

@ P and @ exchange information and exchange members from their respective
partial views

Observation: It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Topology Management of Overlay
Networks (1)

Protocol for | __—2 .
overlay oVt \R—\:, specific other nodes
A

Random peer

— — — — — — — — — — — — — — — — — — "

Random Pro;ocoll fo; :’5—» Links to randomly
overlay ralaeilize —— 5 Chosen other nodes
view \

Figure 2-10. A two-layered approach for constructing and
maintaining specific overlay topologies using techniques from
unstructured peer-to-peer systems.

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Topology Management of Overlay
Networks (2)

v

HHT
]

Time
Figure 2-11. Generating a specific overlay network using a two-

layered unstructured peer-to-peer system [adapted with
permission from Jelasity and Babaoglu (2005)].

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Superpeers

Regular peer

Superpeer

Superpeer
network

Figure 2-12. A hierarchical organization of nodes into a
superpeer network.

Superpeers a) maintain an index, b) monitor the network'’s state,
c) take care of direct connection setups between nodes

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

Collaborative Distributed Systems

Client node
K out of N nodes
Lookup(F) Node 1
: : : \ Node 2
A BitTorrent torrent file List of_ nodes
Web page Ref. to for F Ref. to storing F
file tracker

Web server server File server Tracker

Node N

Trackerless BitTorrent:

all nodes organised in a
distributed hash table (DHT)

Figure 2-14. The principal working of Tracker-based BitTorrent
[adapted with permission from Pouwelse et al. (2004)].

Tanenbaiim & Van Steen Di<tribiited Sveteme<: Princinles and Paradiams e (c) 2007

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

