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The Pain 







Problems of Software Monoliths 

• Huge and intimidating code base for developers 

• Development tools get overburdened 

• refactorings take minutes 

• builds take hours 

• testing in continuous integration takes days 

• Scaling is limited 

• Running a copy of the whole system is resource-intense 

• It doesn’t scale with the data volume out-of-the-box 

• Deployment frequency is limited 

• Re-deploying means halting the whole system 

• Re-deployments will fail and increase the perceived risk of deployment 
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Layered Systems 

A layered system decomposes a monolith into layers 

• Usually: presentation, logic, data access 

• At most one technology stack per layer 

• Presentation: Linux, JVM, Tomcat, Libs, EJB client, JavaScript 

• Logic: Linux, JVM, EJB container, Libs 

• Data Access: Linux, JVM, EJB JPA, EJB container, Libs 

Benefits 

• Simple mental model, simple dependencies 

• Simple deployment and scaling model 
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Problems of Layered Systems 

• Still huge codebases (one per layer) 

• … with the same impact on development, building, and deployment 

• Scaling works better, but still limited 

• Staff growth is limited: roughly speaking, one team per layer works well 

• Developers become specialists on their layer 

• Communication between teams is biased by layer experience (or lack thereof) 
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Growing systems beyond the limits 

• Applications and teams need to grow beyond the limits imposed by monoliths and layered systems, and they 

do – often in an uncontrolled way. 

• Large companies end up with landscapes of layered systems that often interoperate in undocumented ways. 

• These landscapes then often break in unexpected ways. 

 

How can a company grow and still have a working IT architecture and vision? 

• Observing and documenting successful companies (e.g. Amazon, Netflix) lead to the def inition of the 

MICRO-SERVICE architecture principles. 
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Therefore, Microservices 





Underlying principle 

On the logical level, microservice architectures are defined by a 

 

functional system decomposition into manageable  
and independently deployable components 

 

• The term “micro” refers to the sizing: a microservice must be manageable by a single development team (5-9 

developers) 

• Functional system decomposition means vertical slicing  

(in contrast to horizontal slicing through layers) 

• Independent deployability implies no shared state and inter-process communication (often via HTTP REST-ish 

interfaces) 
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More specifically 

• Each microservice is functionally complete with 

• Resource representation 

• Data management 

• Each microservice handles one resource (or verb), e.g. 

• Clients 

• Shop Items 

• Carts 

• Checkout 

 

Microservices are fun-sized services, as in 

      “still fun to develop and deploy” 
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Independent Deployability is key 

It enables separation and independent evolution of 

• code base 

• technology stacks 

• scaling 

• and features, too 
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Independent code base 

Each service has its own software repository 

• Codebase is maintainable for developers – it fits into their brain 

• Tools work fast – building, testing, refactoring code takes seconds 

• Service startup only takes seconds 

• No accidental cross-dependencies between code bases 
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Independent technology stacks 

Each service is implemented on its own technology stacks 

• The technology stack can be selected to fit the task best 

• Teams can also experiment with new technologies within a single microservice 

• No system-wide standardized technology stack also means 

• No struggle to get your technology introduced to the canon 

• No piggy-pack dependencies to unnecessary technologies or libraries 

• It‘s only your own dependency hell you need to struggle with  

• Selected technology stacks are often very lightweight 

• A microservice is often just a single process that is started via command line, and not code and 

configuration that is deployed to a container. 
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Independent Scaling 

Each microservice can be scaled independently 

• Identified bottlenecks can be addressed directly 

• Data sharding can be applied to microservices as needed 

• Parts of the system that do not represent bottlenecks can  

remain simple and un-scaled 
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Independent evolution of Features 

Microservices can be extended without affecting other services 

• For example, you can deploy a new version of (a part of) the UI without re-deploying the whole system 

• You can also go so far as to replace the service by a complete rewrite 

 

 

But you have to ensure that the service interface remains stable 
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Characteristics 



Favors Cross-Functional Teams 

• Line of separation is along functional boundaries, not along tiers 
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Decentralized Governance 

Principle: focus on standardizing the relevant parts, and  

leverage battle-tested standards and infrastructure 

 

Treats differently 

• What needs to be standardized 

• Communication protocol (HTTP) 

• Message format (JSON) 

• What should be standardized 

• Communication patterns (REST) 

• What doesn‘t need to be standardized 

• Application technology stack 
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Decentralized Data Management 

• OO Encapsulation applies to services as well 

• Each service can choose the persistence solution that 

fits best its 

• Data access patterns 

• Scaling and data sharding requirements 

• Only few services really need  

enterprise persistence 
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Infrastructure Automation 

• Having to deploy significant number of services  

forces operations to automate the infrastructure for 

• Deployment (Continuous Delivery) 

• Monitoring (Automated failure detection) 

• Managing (Automated failure recovery) 

• Consider that: 

• Amazon AWS is primarily an internal service 

• Netflix uses Chaos Monkey to further enforce 

infrastructure resilience 
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Challenges 





Microservices Prerequisites 

Before applying microservices, you should have in place 

• Rapid provisioning 

• Dev teams should be able to automatically provision new infrastructure 

• Basic monitoring 

• Essential to detect problems in the complex system landscape 

• Rapid application deployment 

• Service deployments must be controlled and traceable 

• Rollbacks of deployments must be easy 

Source 

htp://martnfowler.com/bliki/MicroservicePrerequisites.html 
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Evolving interfaces correctly 

• Microservice architectures enable independent evolution of services – but how is this done w ithout breaking 

existing clients? 

• There are two answers 

• Version service APIs on incompatible API changes 

• Using JSON and REST limits versioning needs of service APIs 

• Versioning is key 

• Service interfaces are like programmer APIs – you need to know which version you program against 

• As service provider, you need to keep old versions of your interface operational while delivering new 

versions 

• But first, let’s recap compatibility 
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API Compatibility 

There are two types of compatibility 

• Forward Compatibility 

• Upgrading the service in the future will not break existing clients 

• Requires some agreements on future design features, and the design of new versions to respect old 

interfaces 

• Backward Compatibility 

• Newly created service is compatible with old clients 

• Requires the design of new versions to respect old interfaces 

The hard type of compatibility is forward compatibility! 
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Compatibility and Versioning 

Compatibility can’t be always guaranteed, therefore versioning schemes (major.minor.point) are introduced 

• Major version change: breaking API change 

• Minor version change: compatible API change 

Note that versioning a service imposes work on the service provider 

• Services need to exist in their old versions as long as they are used by clients 

• The service provider has to deal with the mapping from old API to new API as long as old clients exist 
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REST API Versioning 

Three options exist for versioning a REST service API 

1. Version URIs 

   http://bank.com/v2/accounts 

2. Custom HTTP header 

   api-version: 2 

3. Accept HTTP header 

   Accept: application/vnd.accounts.v2+json 

Which option to choose? 

• While developing use option 1, it is easy to pass around 

• For production use option 3, it is the cleanest one 
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REST API Versioning 

• It is important to  

• version your API directly from the start 

• install a clear policy on handling unversioned calls 

• Service version 1? 

• Service most version? 

• Reject? 

 

Sources 

htp://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html  

htp://codpebeter.com/howardpdpierking/2012/11/09/versioning-restul-services/  

47 



Conclusion 



Microservices: just …? 

• Just adopt? 

• No. Microservices are a possible design alternative for new web systems and an evolution path for existing 

web systems. 

• There are considerable amounts of warnings about challenges, complexities and prerequisites of 

microservices architectures from the community.
So don’t underestimate the implementation effort (D. Taibi 2018: + 20% in respect to multi-tier)!

 

• Just the new fad? 

• Yes and no. Microservices is a new term, and an evolution of long-known architectural principles applied in 

a specific way to a specific type of systems. 

• The term is dev and ops-heavy, not so much managerial. 

• The tech landscape is open source and vendor-free at the moment. 

50 



Summary 

• There is an alternative to software monoliths and multi-tier 

• Microservices: functional decomposition of systems into  

 manageable and independently deployable services 

• Microservice architectures means 

• Independence in code, technology,  scaling, evolution 

• Using battle-tested infrastructure (HTTP, JSON, REST) 

• Microservice architectures are challenging 

• Compatibility and versioning while changing service interfaces 

• … transactions, testing, deploying, monitoring, tracing is/are harder 

Microservices are no silver bullet, but may be the best way forward for  

• large web systems 

• built by professional software engineers 
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Sources and Further Reading 

• http://martinfowler.com/articles/microservices.html 

• http://www.infoq.com/articles/microservices-intro 

• http://brandur.org/microservices 

• http://davidmorgantini.blogspot.de/2013/08/micro-services-what-are-micro-services.html 

• http://12factor.net/ 

• http://microservices.io/ 

• https://rclayton.silvrback.com/failing-at-microservices 

• http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii  

• http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-
melee.html 

• http://capgemini.github.io/architecture/microservices-reality-check/  
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