

Agenda

• The Pain

• Therefore, Microservices

• Stable Interfaces: HTTP, JSON, REST

• Characteristics

• Comparison with Precursors

• Challenges

• With special focus on Service Versioning

• Conclusion

3

The Pain

Problems of Software Monoliths

• Huge and intimidating code base for developers

• Development tools get overburdened

• refactorings take minutes

• builds take hours

• testing in continuous integration takes days

• Scaling is limited

• Running a copy of the whole system is resource-intense

• It doesn’t scale with the data volume out-of-the-box

• Deployment frequency is limited

• Re-deploying means halting the whole system

• Re-deployments will fail and increase the perceived risk of deployment

7

Layered Systems

A layered system decomposes a monolith into layers

• Usually: presentation, logic, data access

• At most one technology stack per layer

• Presentation: Linux, JVM, Tomcat, Libs, EJB client, JavaScript

• Logic: Linux, JVM, EJB container, Libs

• Data Access: Linux, JVM, EJB JPA, EJB container, Libs

Benefits

• Simple mental model, simple dependencies

• Simple deployment and scaling model

Presentaton

Logic

DB

Data Access

8

Problems of Layered Systems

• Still huge codebases (one per layer)

• … with the same impact on development, building, and deployment

• Scaling works better, but still limited

• Staff growth is limited: roughly speaking, one team per layer works well

• Developers become specialists on their layer

• Communication between teams is biased by layer experience (or lack thereof)

9

Growing systems beyond the limits

• Applications and teams need to grow beyond the limits imposed by monoliths and layered systems, and they

do – often in an uncontrolled way.

• Large companies end up with landscapes of layered systems that often interoperate in undocumented ways.

• These landscapes then often break in unexpected ways.

How can a company grow and still have a working IT architecture and vision?

• Observing and documenting successful companies (e.g. Amazon, Netflix) lead to the def inition of the

MICRO-SERVICE architecture principles.

10

Therefore, Microservices

Underlying principle

On the logical level, microservice architectures are defined by a

functional system decomposition into manageable
and independently deployable components

• The term “micro” refers to the sizing: a microservice must be manageable by a single development team (5-9

developers)

• Functional system decomposition means vertical slicing

(in contrast to horizontal slicing through layers)

• Independent deployability implies no shared state and inter-process communication (often via HTTP REST-ish

interfaces)

13

More specifically

• Each microservice is functionally complete with

• Resource representation

• Data management

• Each microservice handles one resource (or verb), e.g.

• Clients

• Shop Items

• Carts

• Checkout

Microservices are fun-sized services, as in

 “still fun to develop and deploy”

14

Independent Deployability is key

It enables separation and independent evolution of

• code base

• technology stacks

• scaling

• and features, too

15

Independent code base

Each service has its own software repository

• Codebase is maintainable for developers – it fits into their brain

• Tools work fast – building, testing, refactoring code takes seconds

• Service startup only takes seconds

• No accidental cross-dependencies between code bases

16

Independent technology stacks

Each service is implemented on its own technology stacks

• The technology stack can be selected to fit the task best

• Teams can also experiment with new technologies within a single microservice

• No system-wide standardized technology stack also means

• No struggle to get your technology introduced to the canon

• No piggy-pack dependencies to unnecessary technologies or libraries

• It‘s only your own dependency hell you need to struggle with 

• Selected technology stacks are often very lightweight

• A microservice is often just a single process that is started via command line, and not code and

configuration that is deployed to a container.

17

Independent Scaling

Each microservice can be scaled independently

• Identified bottlenecks can be addressed directly

• Data sharding can be applied to microservices as needed

• Parts of the system that do not represent bottlenecks can

remain simple and un-scaled

Scaling

Cube

horizontal & vertical

fu
nc

ti
on

al
 d

ec
om

p
.

JEE Pet Store

Netflix

18

Independent evolution of Features

Microservices can be extended without affecting other services

• For example, you can deploy a new version of (a part of) the UI without re-deploying the whole system

• You can also go so far as to replace the service by a complete rewrite

But you have to ensure that the service interface remains stable

19

Characteristics

Favors Cross-Functional Teams

• Line of separation is along functional boundaries, not along tiers

VS

Presentaton

Logic

DB

Data Access

31

Decentralized Governance

Principle: focus on standardizing the relevant parts, and

leverage battle-tested standards and infrastructure

Treats differently

• What needs to be standardized

• Communication protocol (HTTP)

• Message format (JSON)

• What should be standardized

• Communication patterns (REST)

• What doesn‘t need to be standardized

• Application technology stack

32

Decentralized Data Management

• OO Encapsulation applies to services as well

• Each service can choose the persistence solution that

fits best its

• Data access patterns

• Scaling and data sharding requirements

• Only few services really need

enterprise persistence

33

Infrastructure Automation

• Having to deploy significant number of services

forces operations to automate the infrastructure for

• Deployment (Continuous Delivery)

• Monitoring (Automated failure detection)

• Managing (Automated failure recovery)

• Consider that:

• Amazon AWS is primarily an internal service

• Netflix uses Chaos Monkey to further enforce

infrastructure resilience

34

Challenges

Microservices Prerequisites

Before applying microservices, you should have in place

• Rapid provisioning

• Dev teams should be able to automatically provision new infrastructure

• Basic monitoring

• Essential to detect problems in the complex system landscape

• Rapid application deployment

• Service deployments must be controlled and traceable

• Rollbacks of deployments must be easy

Source

htp://martnfowler.com/bliki/MicroservicePrerequisites.html

41

Evolving interfaces correctly

• Microservice architectures enable independent evolution of services – but how is this done w ithout breaking

existing clients?

• There are two answers

• Version service APIs on incompatible API changes

• Using JSON and REST limits versioning needs of service APIs

• Versioning is key

• Service interfaces are like programmer APIs – you need to know which version you program against

• As service provider, you need to keep old versions of your interface operational while delivering new

versions

• But first, let’s recap compatibility

42

API Compatibility

There are two types of compatibility

• Forward Compatibility

• Upgrading the service in the future will not break existing clients

• Requires some agreements on future design features, and the design of new versions to respect old

interfaces

• Backward Compatibility

• Newly created service is compatible with old clients

• Requires the design of new versions to respect old interfaces

The hard type of compatibility is forward compatibility!

43

Compatibility and Versioning

Compatibility can’t be always guaranteed, therefore versioning schemes (major.minor.point) are introduced

• Major version change: breaking API change

• Minor version change: compatible API change

Note that versioning a service imposes work on the service provider

• Services need to exist in their old versions as long as they are used by clients

• The service provider has to deal with the mapping from old API to new API as long as old clients exist

45

REST API Versioning

Three options exist for versioning a REST service API

1. Version URIs

 http://bank.com/v2/accounts

2. Custom HTTP header

 api-version: 2

3. Accept HTTP header

 Accept: application/vnd.accounts.v2+json

Which option to choose?

• While developing use option 1, it is easy to pass around

• For production use option 3, it is the cleanest one

46

REST API Versioning

• It is important to

• version your API directly from the start

• install a clear policy on handling unversioned calls

• Service version 1?

• Service most version?

• Reject?

Sources

htp://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html

htp://codpebeter.com/howardpdpierking/2012/11/09/versioning-restul-services/

47

Conclusion

Microservices: just …?

• Just adopt?

• No. Microservices are a possible design alternative for new web systems and an evolution path for existing

web systems.

• There are considerable amounts of warnings about challenges, complexities and prerequisites of

microservices architectures from the community.
So don’t underestimate the implementation effort (D. Taibi 2018: + 20% in respect to multi-tier)!

• Just the new fad?

• Yes and no. Microservices is a new term, and an evolution of long-known architectural principles applied in

a specific way to a specific type of systems.

• The term is dev and ops-heavy, not so much managerial.

• The tech landscape is open source and vendor-free at the moment.

50

Summary

• There is an alternative to software monoliths and multi-tier

• Microservices: functional decomposition of systems into

 manageable and independently deployable services

• Microservice architectures means

• Independence in code, technology, scaling, evolution

• Using battle-tested infrastructure (HTTP, JSON, REST)

• Microservice architectures are challenging

• Compatibility and versioning while changing service interfaces

• … transactions, testing, deploying, monitoring, tracing is/are harder

Microservices are no silver bullet, but may be the best way forward for

• large web systems

• built by professional software engineers

51

Sources and Further Reading

• http://martinfowler.com/articles/microservices.html

• http://www.infoq.com/articles/microservices-intro

• http://brandur.org/microservices

• http://davidmorgantini.blogspot.de/2013/08/micro-services-what-are-micro-services.html

• http://12factor.net/

• http://microservices.io/

• https://rclayton.silvrback.com/failing-at-microservices

• http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii

• http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-
melee.html

• http://capgemini.github.io/architecture/microservices-reality-check/

52

http://www.devopsconference.it/ •

