

A service-oriented programming language

Fabrizio Montesi, University of Southern Denmark
https://www.fabriziomontesi.com/

CC BY-SA

Jolie: a service-oriented programming language

● Nice logo:

● Formal foundations from the Academia.

● Tested and used in the real world:

● Open source (http://www.jolie-lang.org/), with a well-maintained code base:

Hello, Jolie!

include “console.iol”

main
{

println@Console(“Hello, world!”)()
}

● Our first Jolie program:

Basics

● A Service-Oriented Architecture (SOA) is composed by services.
● A service is an application that offers operations.
● A service can invoke another service by calling one of its operations.
● Recalling Object-oriented programming:

Services Objects

Operations Methods

Service-oriented Object-oriented

Understanding Hello World: concepts

Our first service-oriented application

main
{

sendNumber@B(5)
}

main
{

sendNumber(x)
}

● A sends 5 to B through the sendNumber operation.

● We need to tell A how to reach B.
● We need to tell B how to expose sendNumber.
● In other words, how they can communicate!

A: B:

A B

● A program defines the input/output communications it will make.

Ports and interfaces: overview

● Services communicate through ports.
● Ports give access to an interface.
● An interface is a set of operations.
● An output port is used to invoke interfaces exposed by other services.
● An input port is used to expose an interface.

● Example: a client has an output port connected to an input port of
 a calculator.

A B

sendNumbersendNumbersendNumber

Our first service-oriented application

include “interface.iol”

outputPort B {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber@B(5)
}

include “interface.iol”

inputPort MyInput {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

sendNumber(x)
}

A: B:interface MyInterface {
OneWay:

sendNumber(int)
}

interface.iol

A.ol B.ol

Anatomy of a port

outputPort B {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

● A port specifies:
● the location on which the communication can take place;
● the protocol to use for encoding/decoding data;
● the interfaces it exposes.

● There is no limit to how many ports a service can use.

A.ol

B.ol

Anatomy of a port: location

● A location is a URI (Uniform Resource Identifier) describing:
● the communication medium to use;
● the parameters for the communication medium to work.

● Some examples:

● TCP/IP:

● Bluetooth:

● Unix sockets:

● Java RMI:

socket://www.google.com:80/

btl2cap://localhost:3B9FA89520078C303355AAA694238F07;nam
e=Vision;encrypt=false;authenticate=false

localsocket:/tmp/mysocket.socket

rmi://myrmiurl.com/MyService

Anatomy of a port: protocol

● A protocol is a name, optionally equipped with configuration parameters.

● Some examples: sodep, soap, http, xmlrpc, …

Protocol: sodep

Protocol: soap

Protocol: http { .debug = true }

Deployment and Behaviour

● A JOLIE program is composed by two definitions:
● deployment: defines how to execute the behaviour and how to

 interact with the rest of the system;
● behaviour: defines the workflow the service will execute.

Deployment

Behaviour

Communication abstraction

● A program just needs its port definitions to be changed in order to support
 different communication technologies!

TCP/IP sockets Unix sockets Bluetooth ...

SODEP SOAP HTTP ...

● Jolie supports many different communication mediums and data protocols.

Operation types

● JOLIE supports two types of operations:
● One-Way: receives a message;
● Request-Response: receives a message and sends a response back.

● In our example, sendNumber was a One-Way operation.

● Syntax for Request-Response:

interface MyInterface {
RequestResponse:

sayHello(string)(string)
}

sayHello@B(“John”)(result) sayHello(name)(result) {
result = “Hello “ + name

}

Behaviour basics

● Statements can be composed in sequences with the ; operator.
● We refer to a block of code as B

● Some basic statements:

● assignment: x = x + 1

● if-then-else: if (x > 0) { B } else { B }

● while: while (x < 1) { B }

● for cycle: for (i = 0, i < x, i++) { B }

Data manipulation (1)

● In JOLIE, every variable is a tree:

● Every tree node can be an array:

person.name = “John”;
person.surname = “Smith”

person.nicknames[0] = “Johnz”;
person.nicknames[1] = “Jo”

person.name = “John”;
person.surname = “Smith”;

<person>
<name>John</name>
<surname>Smith</surname>
</person>

SOAP

<form name=”person”>
<input name=”name” value=”John”/>
<input name=”surname” value=”Smith”/>
</form>

HTTP (form format)

01person02name114Johnsurname11Smith

SODEP

Data manipulation (2)

● You can dump the structure of a node using the standard library.

include “console.iol”
include “string_utils.iol”

main
{

team.person[0].name = “John”;
team.person[0].age = 30;
team.person[1].name = “Jimmy”;
team.person[1].age = 24;

team.sponsor = “Nike”;
team.ranking = 3;

valueToPrettyString@StringUtils(team)(result);
println@Console(result)()

}

Data types

● In an interface, each operation must be coupled to its message types.
● Types are defined in the deployment part of the language.
● Syntax:

● type name:basic_type { subtypes }
● Where basic_type can be:

● int, long, double for numbers
● string for strings;
● raw for byte arrays;
● void for empty nodes;
● any for any possible basic value;
● undefined: makes the type accepting any value and any subtree.

type Team:void {
.person[1,5]:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}

Casting and runtime basic type checking

● For each basic data type, there is a corresponding primitive for:
● casting, e.g. x = int(s)
● runtime checking, e.g. x = is_int(y)

Data types: cardinalities

● Each node in a type can be coupled with a range of possible occurences.
● Syntax:

● type name[min,max]:basic_type { subtypes }
● One can also have:

● * for any number of occurences (>= 0);
● ? for [0,1].

type Team:void {
.person[1,5]:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}

Data types and operations

● Data types are to be associated to operations.

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

Parallel and input choice

● Parallel composition: B | B

● Input choice:

sendNumber@B(5) | sendNumber@C(7)

[ok(message)] { P1 }

[shutdown()] { P2 }

[printAndShutdown(text)() {
println@Console(text)()

}] { P3 }

A calculator service

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

inputPort MyInput {
Location: “socket://localhost:8000/”
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum(request)(response) {
response = request.x + request.y

}
}

Multiple executions: processes

● The calculator works, but it terminates after executing once.
● We want it to keep going and accept other requests.
● We introduce processes.
● A process is an execution instance of a service behaviour.
● In JOLIE, processes can be executed concurrently or sequentially.

execution { concurrent } execution { sequential }

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

Some other things you can do with Jolie

Leonardo

● A web server in pure Jolie.

● Can fit in a slide.
 (ok, I reduced the font size a little)

● ~50 LOCs

Jolie and DBMS

● Equipped with protection from SQL injection.

id name surname

1 John Smith

2 Donald Duck

Jolie and Java

public class StringUtils
extends JavaService

{
public String trim(String s)
{

return s.trim();
}

}

