

E-Kart
15.04.2018
─

Alex Lardschneider

TFO “Max Valier” Bolzano
5IA Information Technology

Tutor: Wild Michael
In collaboration with: Galliani Alex & Moroder Johannes

1

Table of contents

Table of contents 1

Project Overview 4

Goals 4

Motivation 4

Project timeline 6
06.11.2017 - Abstract submission 6
Middle of November 6
29.01.2018 - 02.02.2018 - Project week 6
Late February 6
Early March 6
Late March 6
Late April 6
Early May 6
02.05.2018 - Project submission 6
11.05.2018 - 12.05.2018 - Project day 6

Independent Software Components 7
Microcontroller 1 (Teensy 3.5) 7
Microcontroller 2 (ESP8266 based Wemos D1) 7
iOS Application 8
macOS Application 8

Theoretical background 9
Arduino 9

Hardware Design 9
Software Design 9
Basic Arduino Sketch 10

Teensy 10
ESP8266 10
iOS 11

MFi Program 11
macOS 11
Swift 12
I2C 12

2

SPI 12
Serial Communication 13
CAN-BUS 13
PlatformIO 13
GPS, GLONASS, and NMEA 14

Used Hardware 14
Hardware choices 14
Teensy 3.5 15
Wemos D1 15
SparkFun Venus GPS plus SMA Antenna 15
DS18B20 Temperature Sensors 15
SparkFun MPU6050 Accelerometer and Gyro 16
TMP006 Infrared Temperature Sensor 16
SparkFun BlueSMiRF Bluetooth 16
SparkFun CAN-BUS shield 16
Cable connections 17
Prototyping and PCB 17

Main Microcontroller Software Design (Teensy 3.5) 18
Tools 18
Dependencies 18
Structure 20

Message Relay Software Design (Wemos D1) 21
Tools 21
Dependencies 21
Structure 21

iOS App Design 22
Tools 22
Structure 22
Dependencies 23
Navigation 25
App layout 25
Connection Flow 26

Data logging 27
File format 28

Data transmission 29
Data format 29

3

Checksum 30

Data evaluation 31
macOS data converter 31
PostgreSQL database 32

Testing and validation 32
Testing on the Arduino platform 32
iOS Testing 33

Tweaks and improvements 34

Experience and closing 34
Where to go from here 35

Sources 36

4

Project Overview
E-Kart is an attempt to build a fully electric race go-kart, using latest battery, engine, and
powertrain components. This go-kart should be noise- and emissionless and still be more
powerful than a traditional internal combustion engine (ICE) powered equivalent. My part
of the project is to build the engine control system (ECU) to control and monitor
mission-critical components and an iOS app to display a few parameters and track info on
an iPhone, which will be put into the steering wheel.

The iOS app should be able to display important parameters like current speed, engine,
brake, and drivetrain temperatures and log these parameters for further evaluation later
on.

Goals
1. Build a fully electrical go-kart using the latest available technology

2. Make it as fast, powerful and lightweight as possible

3. Make it technologically advanced using many computers

4. Prove that electric vehicles can and will beat gasoline powered ones.

5. Try to beat the acceleration record for electric go-karts

Motivation
Traditional ICE powered go-karts contain a lot of parts, and in many cases wear is going to
be an issue. In fact, a traditional go-kart needs to have its pistons and transmission
changed every 40 hours. That is going to get expensive very fast. An electric go-kart doesn’t
need a transmission, and the electric motor is very simple, thus we can overcome the
40-hour limit. From a technological standpoint, many go-karts are also kept very simple.
Using many microcontrollers and a smartphone we want to build the most advanced
go-kart possible, and if possible beat the current 0-100 km/h acceleration record.

My motivation for this projects comes from my passion to work with a combination of
hardware and software components. I also really like fast and powerful cars and a go-kart
is the perfect fit for this since it is equipped with a 130kW engine, normally found on way
bigger cars.

Since joining this school, I started working with Arduino clones bought from eBay in my free
time and started some smaller projects like a weather station on my mountain hut or a

5

small IoT infrastructure at home, consisting of a mesh network of ESP8266
microcontrollers. I like discovering solutions to difficult problems and finding the most
efficient way to solve them and this project strengthened this quality. Building this go-kart
has been a real challenge for me and I acquired a lot of valuable knowledge working with
so many different components.

Below you can find some pictures of the finished project presented at the “Projekttag” on
11.05.2018 and 12.05.2018.

6

Project timeline

I. 06.11.2017 - Abstract submission
The abstract needs to be submitted to the tutor.

II. Middle of November
Arrival of go-kart chassis and electrical components for the powertrain.

III. 29.01.2018 - 02.02.2018 - Project week
A full week available to work on the project.

IV. Late February
Delivery of electrical components.

V. Early March
First working prototype of the iOS app.

VI. Late March
First working prototype of the go-kart software

VII. Late April
Project description submission (this document).

VIII. Early May
Arrival of the chassis cover made out of compound materials.

IX. 02.05.2018 - Project submission
Submission of the project.

X. 11.05.2018 - 12.05.2018 - Project day
Two days available to present the project to outside spectators.

7

Independent Software Components
The different software parts powering this project will be split into 4 different completely
independent parts. This is done mostly because of technical limitations like different
platforms and programming languages, and for logical reasons.

The microcontrollers on the go-kart are powered by two separate software components,
one iOS app powers the user interface mounted on the steering wheel and a macOS
application evaluates telemetry data collected by the microcontroller.

Microcontroller 1 (Teensy 3.5)
This microcontroller is the brain of the project. It interfaces with the various sensors
mounted on the go-kart, transforms and processes this data, sends it to the relay
microcontroller and saves it to the SD card for eventual evaluation later on.

A Teensy 3.5 microcontroller, based on the Arduino platform, powers this software. It is a
breadboard-friendly development board with loads of features. Powered by a 120 MHz
ARM-Cortex based CPU with floating point unit, it features sufficient digital inputs needed
to realize this project (I2C, SPI, Serial).

Microcontroller 2 (ESP8266 based Wemos D1)
The first iterations of this project featured a Bluetooth connection between the Teensy 3.5
and the iOS application. Further research revealed that this is not feasible without a special
partnership with Apple, the so-called Apple MFi program and the ordered Bluetooth shield,
which does not feature Bluetooth Low Energy.

Ordering a compatible Bluetooth shield was not possible without exceeding the deadline,
so I decided on using a Wemos D1 microcontroller I had lying around at home.

The ESP8266 based Wemos D1 is a fully fledged ARM microcontroller, also compatible with
the Arduino platform. It features a 2.4 GHz Wifi antenna and a fully implemented TCP/IP
stack. Current iterations of this project feature this microcontroller as a message relay,
forwarding data packets from the main microcontroller to the client and vice-versa via WiFi.
The relay automatically advertises a WiFi access point to remain connected during driving.

8

iOS Application
The iOS application, written in Swift and Objective C (for low-level networking and sockets),
displays transmitted telemetry data on a pager based layout.

The main screen, visible during driving, consists of three different page based views. The
first view displays a map with the current vehicle position centered on the map. It
automatically follows vehicle movement when a new data set arrives.

The second view, which is visible by default when you connect to the go-kart, displays
important telemetry data and the vehicle speed at the top. Parameters are highlighted in
different colors, to sign warning or critical data with yellow or red colors respectively.

The third and last view displays more telemetry data, which is not crucial during driving. It
also allows for some basic vehicle configuration.

Two buttons mounted on the steering wheel allow the driver to quickly switch between the
three pages.

When first opening the application, the user is presented with a welcome screen, where the
user can connect to the WiFi access point and the vehicle. Errors during the connection are
displayed with dialogs.

macOS Application
A small macOS application, written in Swift, converts the telemetry data stored by the main
microcontroller and stores it in a PostgreSQL database (or any other database depending
on the user’s availability or preference). This allows for data statistics using conventional
SQL function aggregators like SUM, MIN or MAX.

9

Theoretical background

Arduino
The Arduino platform is a open source hardware and software platform. It designs popular
single-chip microcontrollers and kits (DIY) to allow cheap robotics prototyping. The board
features various analog and digital pins and supports the most common protocols used in
robotics, I2C, SPI and one or more hardware serial interfaces. Almost all boards feature a
USB interface which is used to load the bootloader and software.

The Arduino platform also provides its own IDE, based on the popular Processing language
project.

Originally founded in Ivrea, Italy in the year 2003, Arduino still provides hardware
schematics and software under the GNU General Public License.

The most common Arduino board is the Arduino Uno, originally released as Arduino RS232.

Hardware Design
Most Arduino boards consist of a single CPU, based on an Atmel 8-bit AVR microcontroller
(most common one used is the ATmega328). In 2012, a 32-bit based Arduino, the Arduino
Due was released. Atmel designs and licenses the ARM CPU architecture used by AVR.

All Arduino boards come preloaded with a custom bootloader that simplifies uploading of
programs to the built-in flash memory. Current Arduino models are programmed using the
USB interface, which is using RS232 communication. Original Arduino models feature an
FTDI USB-to-serial adapter, the cheaper China copies, including the one I own, are fitted
with the cheaper CH340G USB-to-serial converter.

Most of the ATmegas CPU pins are exposed via female 0.1-inch pin headers for external
development. Several plug-in application shields are also available.

All Arduino boards feature a built-in LED, most commonly available on the digital I/O pin
13. It can be referenced in software using the macro ​LED_BUILTIN​.

Software Design
Arduino can be programmed using every available programming language, which produces
binary code compatible to the AVR architecture. Atmel provides its own IDE and compiler
suite for AVR programming.

Arduino programs are called sketch and are saved as .ino files. A minimal sketch consists of
two main methods, called ​setup and ​loop​. Like in Processing, the setup method is called

10

once at boot. The loop method, however, runs, as the name indicates, in a loop until the
microcontroller loses power or experiences a software crash.

Basic Arduino Sketch
Below you can find a minimal Arduino sketch, which continuously flashes the built-in LED in
one-second intervals.

void​ setup​()​ ​{
 pinMode​(​LED_PIN​,​ OUTPUT​);​ ​// Configure pin 13 to be a digital output.
}

void​ loop​()​ ​{
 digitalWrite​(​LED_PIN​,​ HIGH​);​ ​// Turn on the LED.
 delay​(​1000​);​ ​// Wait 1 second (1000 milliseconds).
 digitalWrite​(​LED_PIN​,​ LOW​);​ ​// Turn off the LED.
 delay​(​1000​);​ ​// Wait 1 second.
}

Teensy
The Teensy development board is a third party Arduino compatible development board. It
features more powerful CPUs and I/O pins. Compared to the Arduino boards, Teensy fully
supports all USB hardware types, allowing it to emulate keyboards (USB-HID) or MIDI
devices. Next to I2C, Teensy also features an I2S interface.

Teensy 3.5, the microcontroller is based on a 120 Mhz 32-bit ARM Cortex CPU design with
512 kB of flash memory. It is a downscaled version of the Teensy 3.6 offered at a cheaper
price, but features 5V logic level resistant I/O ports, whereas the Teensy 3.6 is only 3.3V
compatible.

ESP8266
ESP8266 is a low cost, WiFi-equipped Arduino based microcontroller. It features a full
TCP/IP stack, making it an attractive option for IoT devices. The ESP8266 features a RISC
based 32-bit ARM CPU with up to 16 MiB of flash memory.

The Wemos D1 is a breakout board which makes connecting the ESP8266 to standard 0.1
inch (2.54 mm) easy.

11

iOS
iOS (originally called iPhone OS) is a mobile operating system developed and distributed by
Apple exclusively for its own mobile phone lineup. It was originally released in 2007 and is
based on the 32-bit ARM architecture. Newer models (devices equipped with Apple A7 or
later) are fully 64-bit based. The latest iteration if iOS - iOS 11 - is only available on 64-bit
hardware. It is written in C, C++, Objective C and later iterations partly in Swift.

iOS software can be developed with every programming language which compiles to ARM
bytecode. Deployment to devices is only allowed through Xcode and its proprietary code
signing software, although unofficial sideload methods exist (Cydia Impactor).

The original unveiling of iOS also featured the first iteration of the iOS SDK (Software
Development Kit) without support for third-party applications. The SDK is free to use on
Apple hardware without support for Windows or Linux, although Apple officially supports
Swift (Apples own iOS and macOS programming language) development on Linux.

The latest available release is iOS 11.

MFi Program
Apple's MFi Program is a licensing program for certain Apple hardware and software. It
covers various hardware interface including its corresponding software interfaces, like the
headphone jack, the lightning connector or the Bluetooth interface. Apple currently
charges 100$ a year to be MFi partner.

macOS
macOS, originally called OS X, is a desktop operating system developed and distributed by
Apple exclusively for its Mac Desktop lineup. It is based on technologies originally
developed at NeXT, a company that Steve Jobs created after being fired from Apple. NeXT
was later acquired by Apple, promoting Steve Jobs to CEO.

First releases of macOS, back then called OS 9 and OS X (the X referring to the roman
numeral for 10) only ran on PowerPC based systems. In 2006, Apple announced that they
were switching to Intel CPUs and the x86-64 architecture. OS X 10.4 Tiger was the first
release to only run on x86.

At the 2016 WWDC OS X was officially renamed to macOS to be more consistent with the
other operating system names (iOS, tvOS, and watchOS). The currently latest available
version is macOS 10.13 High Sierra.

12

Swift
Swift is a general-purpose programming language developed by Apple for its platforms
macOS, iOS, tvOS, and watchOS. It is based on the LLVM project, also developed by Apple
and is designed to seamlessly interface with current Cocoa-based interfaces. Swift was first
released at the 2013 WWDC (Worldwide Developer Conference) bundled with Xcode 6 in
San Francisco and its latest available version is Swift 4.1.

It employs modern programming paradigms (Optionals and chaining) and compared to
Objective-C a simpler syntax. It is commonly referred to as “Objective-C without the C”.

I2C
I2C is a multi-master multi-slave bus system developed by Phillips to connect multiple
“slave” ICs to one or more “master” systems. It is only intended for short distance
communication with a focus on reliability instead of speed. It only needs to wires, one for
SDA (data signal) and SCL (clock signal).

 I2C is an asynchronous interface, meaning that no clock data is transmitted and both
devices need to agree on the same clock (or similar) beforehand. This makes the hardware
requirements at both sides relatively complex. An I2C data message contains 10 bits, one
start and end bit and 8 data bits. Each device connected to the I2C bus needs its own
address (for example 0x680).

While there is no theoretical speed limitation, specification limits the fastest data transfer
mode (High-Speed Mode) to 3.4Mbps.

SPI
SPI (Serial Peripheral Interface) is a data bus commonly used to send data to various
hardware devices such as SD card readers, shift registers or sensors. It uses a separate
data and clock line together with one device select line (Arduino’s ​CHIP_SELECT​) to chose
the device you wish to talk to.

Compared to I2C, SPI is a synchronous interface, which keeps the clock on both sides in
sync and thus eliminates the need for a start and stop bit. The clock signal tells the device
exactly when to sample bits on the data line. This also eliminates the need for complex
hardware at the master and slave side.

Because the clock is sent to each device, there is no theoretical speed limit at which SPI can
operate.

13

Serial Communication
Serial communication is a communication where the data bits are sent one bit at a time,
sequentially over a wire. This contrasts with parallel communication where bits can be sent
in parallel with interlinked wires.

Serial communication can be used for long-range data transfer, where parallel
communication cannot be used due to timing constraints and increased cable cost. Like
I2C, serial communication is asynchronous, where both sides need to agree on the same
speed (baud rate) in order to get correct data.

The serial interface consists of two data wires, TX and RX. TX is used for data transmission,
RX for receiving data. To send data between two devices, you need to cross over the
connections, so that RX1 goes to TX2 and TX1 to RX2. The Teensy 3.5 used in this project
features 5 completely independent hardware UARTs. Theoretically, every I/O pin on a
microcontroller can be used as a serial interface using software at the cost of reliability.

CAN-BUS
A CAN bus (Controller Area Network) is a robust interface designed to allow
microcontrollers to talk with each other without a host computer. It was originally
developed for automobiles to interconnect many components but has since been used in
many other contexts.

A CAN bus consists of two wires, CANH (CAN High) and CANL (CAN Low). Multiple devices
can be connected to the same wires. Since the Arduino can not directly communicate via
the CAN bus, a special IC has to be added in between to convert CAN data to SPI.

PlatformIO
PlatformIO is an open source ecosystem for IoT development. It is suited for embedded
device development and has configuration files and toolchains available for the most
popular microcontrollers. PlatformIO is written in Python and is cross-platform compatible
and can be installed via Pythons own package manager (​pip​). It can be invoked from the
command line to create a project, build the code and deploy it to the microcontroller. Since
the official Arduino IDE is very basic and lacks many (in my opinion) important features, I
decided to use PlatformIO together with JetBrains excellent CLion IDE.

14

GPS, GLONASS, and NMEA
GPS (Global Positioning System) is a satellite-based navigation system originally developed
for the US military. After a plane crash, which could have been prevented had GPS been
public at the time, the US government decided to open GPS for private use. GPS does not
require user hardware to send data, but only receives signals broadcast from satellites.
GPS needs a minimum of 4 satellites for trilateration to work (3 satellites would give us a
maximum of 2 possible points on a sphere in the worst case, so sometimes 3 satellites are
enough for basic navigation).

GPS provides location, direction, velocity and time information with an accuracy of down to
30 cm with high-end devices.

Since GPS is solely owned by the US military, Russia, China, and the EU decided to build its
own global satellite-based positioning system, with the most famous one being Russia's
GLONASS. The receiver used in this go-kart can use both GPS and GLONASS.

The receiver outputs the data in the NMEA format (National Marine Electronics
Association). This format consists of multiple different sentences, where each sentence has
its own name which is sent at the beginning of the message. Each message contains a
different type of information for location, accuracy, satellite count or bearing. TinyGPSPlus
is used on the microcontrollers to parse the NMEA data.

Used Hardware

Hardware choices
I chose most of the hardware based on experience with the various components. I used
various Arduino microcontrollers for IoT projects at home and already knew how Arduino
programming works. I had experience using the DS18B20 temperature sensors for an
ongoing weather station project and they still work very reliably. A weather balloon project
we built in the fourth term in school made me familiar with the GPS antenna and its
interface. The rest of the components were chosen based on reliable manufacturers and
use cases. Below you can find the hardware components I used for this project.

15

Teensy 3.5
Main microcontroller to which all sensors and analog inputs are attached. Logs telemetry
data and sends it to the message relay. It also houses the microSD card, where all sensor
data is logged.

Wemos D1
Message relay which acts as a WiFi Access Point the iOS Application can connect to.
Receives messages from the main microcontroller via a serial interface and transmits it via
a socket connection to the client.

SparkFun Venus GPS plus SMA Antenna
The latest version of the Sparkfun Venus GPS lineup features improved reliability in a
smaller package. It is fitted with a standard SMA connector where we can attach an SMA
antenna. The one we chose is a normal antenna with a 5m cable attached, so we can
position it anywhere on the go-kart, furthest away from external interference like high
current sources. The GPS connects data about latitude and longitude of the go-kart, and in
case of CAN-BUS failure also speed and acceleration data (CAN-BUS is a software/hardware
interface we use to read engine RPM data from the electric inverter).

The GPS sensor is connected to the serial nr. 5 interface on the main microcontroller.

DS18B20 Temperature Sensors
The go-kart is fitted with a total of 7 temperature sensor. I chose the DS18B20 lineup since I
had experience working with it and it features a waterproof version. Two waterproof
temperature sensors are mounted in the liquid cooling system, to measure coolant
temperature before and after the radiator. Two sensors are mounted in between the
battery backs on both sides to measure battery temperatures. Another sensor is mounted
behind the radiator exhaust and one measures general outside air temperature. The last
temperature sensor measures the temperature inside the electrical box that houses all
hardware components. This sensor can measure temperatures from -25°C up to 125°C.

These sensors are connected via the Dallas (the manufacturer of the sensors) OneWire
interface, meaning that we can connect all 7 sensors on only 3 wires (GND, Vcc, and Signal).

16

SparkFun MPU6050 Accelerometer and Gyro
This sensor measures acceleration and gyro data from up to 9 different axes. We use it to
measure lateral acceleration in turns and acceleration or deceleration. The sensor is
connected via I2C to the main microcontroller and is advertised on the address 0x68.

TMP006 Infrared Temperature Sensor
The TMP006 is an infrared temperature sensor to measure brake pad temperature. We
need infrared sensors in these areas since we can’t physically mount conventional sensors
on rotating parts. Each sensor is advertised on its own I2C address (from 0x40 to 0x43) and
has a measuring range from -25°C up to 125°C.

Two sensors are mounted on the brake pads in the front and one is mounted on the
drivetrain brake pad in the back. A fourth one would have been used to measure asphalt
temperature, but since it was DOA that plan was scrapped.

It has been retired by SparkFun shortly after I ordered it. No replacement model is
available as of middle of April 2018.

SparkFun BlueSMiRF Bluetooth
This Bluetooth 4.0 sensor was originally planned to be used for data transmission between
the main microcontroller and the iOS application. Since Apple's MFi program does not
allow interfacing with non-BLE sensors, that plan had to be scraped and this sensor has
been replaced with the Wemos D1 WiFi chip. The sensor can be interfaced using a serial
interface and supports data transmission rates up to 115200 baud.

SparkFun CAN-BUS shield
This CAN-BUS shield allows for interfacing with CAN connectors. It features a D-SUB 9-pin
connector and can be connected to the electrical inverter using a custom DB9 to OBD-II
cable. This shield allows us to read important inverter parameters, like engine RPM, coolant
temperature, battery voltage, inverter temperature, engine temperature and power output.

This shield is originally planned to be mounted on an Arduino Uno and features pins in the
correct location. It also contains connectors for a serial monitor, a GPS antenna and an SPI
microSD card slot, but since we have better external hardware we will not use built-in
connectors. We only need the SPI pins to interface with the MCP2515 CAN-to-SPI ASIC so
we do not need to mount the board like a shield.

This shield can read CAN data up to 1 Mb/s at an SPI speed of 10 MHz.

17

Cable connections
Since sensors need to be able to be connected and disconnected without effort at any time,
all external sensors are attached to an RJ11 male connector. It features up to 6 wires
making it the perfect choice for all the sensors I use. A female counterpart is soldered to
the breadboard the main interface is attached to. RJ11 connectors have been ordered off
SparkFun.

Prototyping and PCB
All the prototyping (testing and developing of hardware) is done on breadboards, which are
a type of PCB where all rows (not columns) are interconnected. Components can be
pressed into the board which allows for fast development since no soldering is required.

For actual use inside the go-kart, a breadboard is not an optimal choice since the solderless
connections can become loose during driving due to vibrations. To prevent that from
happening, all components will be soldered to a standard 0.1 inch PCB.

Below is a picture of the finished PCB, mounted together with all the electrical components
in a waterproof plastic box.

18

Main Microcontroller Software Design (Teensy 3.5)

Tools
The software for the main microcontroller is programmed using the Arduino SDK. Since the
official toolchain is limited to Arduino’s own IDE, I decided to use the PlatformIO toolchain
so that I can use the JetBrains CLion IDE, which I prefer and it offers much more advanced
features and code smell checks. The PlatformIO toolchain can be installed on macOS,
Windows or Linux and is built on python. Installation on macOS works using ​brew​, ​pip or
easy_install​. It can be invoked from the command line to automatically create a
compatible project structure for the required IDE:

platformio init --board ​teensy35​ --ide clion

This command creates the project structure compatible with JetBrains IDE and includes the
required toolchain. Deploying works as follows:

platformio run -t upload

This command automatically compiles the user-written code, any additional libraries, and
the Arduino SDK into a platform compatible executable binary. PlatformIO then discovers
the microcontrollers port (​/dev/wchusb14*** on macOS) and uploads the code. At the
end, the microcontroller is restarted and the program starts running. A serial monitor can
be attached if needed.

Dependencies
This project depends on some external software libraries to help with interfacing with
sensors. The dependencies I used were mostly recommended by the vendor of the
sensors. Adding external code is easy. PlatformIO automatically creates a ​libs ​folder,
where libraries in the Arduino library format can be placed. They are automatically included
during compilation.

19

Currently, the following libraries are used for the main microcontroller:

● TinyGPSPlus

Handles encoding and converting the GPS NMEA sentences coming from the GPS
receiver via the serial interface. It allows accessing properties via C++ structs and
properties. This library is a fork from the original TinyGPS library, which did not
expose properties via nested C structs and didn’t properly read the HDOP property.

● SdFat

Handles access to the SD card and file reads/writes. The version I use is a special
fork from the original SdFat project, since Teensy 3.5 connects its SD slot to a special
SPI interface, without the need of the ​CHIP_SELECT pin and command. The forked
version automatically uses the newer SPI interface. Newer versions of this library
also allow the opening of multiple files at once, which is needed for this project
since different sensor data is logged in separate files.

● TMP006

Interfaces with the TMP006 infrared temperature sensors. The library allows for
querying temperature data from a remote surface using the IR sensor and the local
sensor temperature. The library uses the Wire interface internally, which is Arduino’s
way to interface with I2C sensors. Normally each sensor has the same I2C address,
but since we are using multiple of the same sensors we needed to change the
addresses by pulling ​ADDR0​ and ​ADDR1​ on the sensor to ​GND​ or to ​Vcc

● DS18B20

Interfaces with the DS18B20 temperature sensors. Supports Fahrenheit, Kelvin, and
Celsius. Each sensor is addressed using 10 hexadecimal values and the library
supports multiple sensors.

It depends on the OneWire library for communication with the sensors. Usually, it is
included with the Arduino SDK but it needs to be included manually if any other
toolchain is used.

● CAN-BUS library

The SparkFun CAN-BUS shield ships with its own Arduino compatible library.
Without modification, the library supports reading of engine RPM, engine coolant
temperature, vehicle speed, MAF sensor (mass flow sensor, not used in our case
since the engine is electrical) and O2 sensor (also not used for the same reason).

Custom values provided by our engine controller can be read by supplying the
library with a hexadecimal address value (for example ​0x05​).

20

Structure
The project is structured like a normal
Arduino project, with the difference of
using ​.cpp and ​.h file extension instead
of the Arduino IDE ​.ino extension. A
main.cpp class handles the setup and
void methods. The code for each different
sensor is located in a separate directory
inside the ​src folder. Each sensor type
has its own source and header file.

Each sensor file has an ​init method,
where code that needs to run at boot gets
executed (for example the OneWire
interface is initialized, the existence of the
microSD card is checked, baud rate for the
serial interfaces is set and so on).

Another method reads the data from the
sensor and saves it into a global ​GoKart
struct, where all data is collected. This
struct persists over the lifetime of the
program, so it always contains the latest
collected data, which the message sender
code can then transmit.

The nearby flow charts shows how the
microcontroller software works. On boot,
the Teensy 3.5 first starts the CPU and sets
relevant registers and executes the ​setup
method. The setup method calls all ​init
methods of sensors and other hardware.
This method only runs once at boot. The
loop method is executed immediately
after and runs in a loop until the
microcontroller crashes or loses power. It
continuously collects sensor data, writes it to the microSD card if available and transmits it
to the message relay.

21

Message Relay Software Design (Wemos D1)

Tools
For the message relay, the same PlatformIO toolchain is used, with the only difference
being another board definition when using the init command:

platformio init --board ​d1_mini​ --ide clion

This command initializes the project as already described in section ​Microcontroller
Software Design # Tools above.

Dependencies
Since the only purpose of the Wemos D1 microcontroller is to relay serial messages to the
WiFi socket and vice versa, no external dependencies are needed. The Espressif SDK
included in the Arduino toolchain contains built-in libraries to create WiFi access points and
TCP socket servers.

Structure
The program for this microcontroller is
structured in one single file to relay
messages and a utils file for generating
and verifying checksums for the
messages (as described below).

On microcontroller startup, the setup
method starts the WiFi access point with
a previously defined SSID and
passphrase and initializes the serial
interface with the correct baud rates
(9600 baud in my case).

The loop method continuously checks if a
new client tries to connect to the socket
server and accepts the connection. Only
one concurrent client is supported. If a
client is connected, the microcontroller

22

checks for incoming messages from the serial and socket connections and forwards it to
the counterpart. Since the serial interface does not guarantee message integrity, a
checksum needs to be added to each message. If the checksum does not match the
computed one, the message is discarded.

iOS App Design

Tools
The iOS app is programmed using Swift and Objective-C. Apple provides an own IDE called
Xcode to develop, build and deploy applications for Apple devices. Xcode handles project
creation, package identifier registration, app capability handling (you need to request
special permission to use certain software or hardware features, like maps or Bluetooth),
code signing and deploying.

Up until now, Xcode is and remains the only official IDE to develop iOS applications.
JetBrains sells its own IDE for iOS development called AppCode, but it cannot keep up with
the rapid changing aspect of Swift development and lacks important features like the
Interface Builder with drag and drop support for view binding.

External tools like Cydia Impactor can be used to install applications from Windows or
Linux but they are not officially supported and often used maliciously. Using such tools
often ends in a revocation of the developer account.

The app is built to target iOS 11 so that new APIs can be used, like the
NEHotspotConfiguration API, which is required to connect to WiFi APs programmatically
without leaving the app.

Structure
iOS applications do not need to follow a special structure like Java programs do (using
packages and source dirs). Program files can be placed anywhere in the application
module. They can also be grouped using logical folders (these folders do not represent file
system folders). In my case, the UI and logic are separated, where each view controller and
its relevant UI classes are grouped together.

Application assets (images, backdrops,...) need to be placed in a folder called
“​Assets.xcassets​” so they can be loaded in Xcode.

All the storyboards are placed in a folder called “​Base.lproj​” which represents the base
language of the application, in my case English.

23

Dependencies
No official dependency management solution exists for iOS applications (like Gradle for
Android). Apple’s solution would be to download the library from a ​git repo and bundle it
as an external framework. This makes it impossible to check for updates.

Apple does bundle the Swift Package Manager (SPM) to Swift, but it lacks many features
and compilation takes longer since the frameworks are linked differently.

A few open source package managers exist, however, the two most popular ones being
CocoaPods and Carthage. Since I already had experience using CocoaPods, I decided to use
it for this project.

CocoaPods works by including a ​Podfile in each library git repo, which CocoaPods then
scans and adds to its index. The whole index is then downloaded locally on the developer’s
computer when installing CocoaPods, and by creating a ​Podfile in the project folder you
can reference these libraries. To create a ​Podfile and install dependencies you can use
the following basic commands:

pod init

This command automatically searches for an Xcode Project and transforms it into a
Workspace (the difference being the possibility to bundle frameworks used by CocoaPods).
It also creates a ​Podfile​ where you can add libraries. A basic ​Podfile​ looks like this:

Uncomment the next line to define a global platform for your project
platform :ios, '9.0'

target ​'GoKart'​ ​do
 ​# Comment the next line if you're not using Swift and don't want to use dynamic frameworks
 use_frameworks!

 ​# Pods for GoKart

 pod ​'BEMSimpleLineGraph'

 pod ​'SwiftSocket'

end

This file would install the dependencies ​BEMSimpleLineGraph and ​SwiftSocket​, link
them to the Project ​GoKart​ and build them for iOS 9.0 and newer.

24

To install the dependencies listed in the Podfile, you can run two different commands,
depending if you want to freshly install new dependencies or just update changed ones.

pod install

This command downloads the library, copies it into the ​Pods folder inside the project,
compiles it and links its framework to the project.

pod update

This command only updates changed dependencies (like a newer library version).

Theoretically, after running the ​pod command, Xcode should reload the changed
components and detect the new frameworks on its own, but I found that that does not
happen every time and the build fails and imports are not resolved. A solution to this
problem is to close the workspace and reopen it so that all components are reloaded.

I decided to use the following libraries in this app:

● BEMSimpleLineGraph

This library provides a line graph, which I will use to display power data in relation to
time on the drive screen. It allows animation of the line and bezier curves to smooth
out corners. The view can be integrated into the project by creating a normal view
inside the Interface Builder and setting its class to ​BEMSimpleLineGraph​.

● SwiftSocket

Swift does not provide a way to connect to normal TCP sockets without using native
C code. SwiftSocket provides an abstraction layer over these C functions and allows
the use of modern language features to make socket handling easier. This library is
used to connect to the socket server provided by the Wemos D1 message relay.

● SwiftyBeaver

A small logging library, which allows logging after levels (​ERROR​, ​WARNING​, ​INFO,
and ​DEBUG​).

25

Navigation
When launching the app, the user is presented with a welcome screen. It features a small
image at the top and a red connect button at the bottom with additional progress text (see
screenshots below). When pressing on connect and the connection to the message relay is
established, the layout changes into driving mode, where all driving data is displayed. This
screen consists of a pager based layout with three pages, each displaying different data
(like described in ​Independent Software Components # iOS Application​).

App layout
There are many different ways to build app layouts in Xcode. The most common way is to
use the Interface Builder, where you can add views and create layout constraints using
drag and drop in a live preview.

I decided to use a single interface storyboard (​Main.storyboard​) and place all view
controllers (the activity equivalent on Android) in it. The view controllers are linked using
push segues.

A separate storyboard represents the screen when the app is launched and no code is
loaded yet (​LaunchScreen.storyboard​).

26

Connection Flow
The connection flow is not really easy
since we need to check a lot of things in
order to acquire a reliable connection.

First of all, we need to connect to the
WiFi AP broadcast by the message relay.
This can be done by using Apple’s
NEHotspotConfiguration​, which
keeps the WiFi connection alive until the
user exits the app. Unfortunately, there
is no other way to do this
programmatically except manually
connect to the WiFi AP from the Settings
app. If the WiFi AP is not available the
app displays an error message.

To connect to the socket, we first need
to get the gateway IP address, which in
our case is the message relay where the
socket server listens. We could hardcode
this IP address, but I noticed it changing
at random intervals, so better fetch it on
every connect.

Next, we try to connect to the socket at
the gateway IP address. A timeout of 10
seconds ensures that we are not stuck in
an endless loop, which can happen with
raw C sockets (which SwiftSocket is
based on). If the connection fails, an
error message is displayed.

If the connection is successful, a ​‘HELLO’ welcome text is sent to the message relay (which
is then forwarded to the main microcontroller) to signal that a new client is connected and
is ready to accept telemetry data.

Unfortunately, this type of socket does not provide us with disconnect information, so we
need to rely on time-based pings to check if the connection is still alive. If no new data
arrives in more than 30 seconds, we consider the connection dead and disconnect.

27

Data logging
Since not all available telemetry data is transmitted to the client (way too much data to for
serial connection running at 9600 bauds), we decided to log all available data for later
evaluation. All data is collected in the GoKart struct, which persists over the lifetime of the
program. This data is then periodically written to the microSD card (a boolean flag keeps
track if data has been updated and it is only written if true).

If the SD card is not available the data is simply not logged and the program continues to
work without this feature.

Every category of data is written to a separate file (GPS, temperature, acceleration, CAN,
system, …) so that writes can be reduced and data can be written in smaller packets. This
makes it also easier to collect certain data without needing to evaluate all categories.

Since Teensy doesn’t offer UTC timekeeping (like using NTP or other network time
coordination protocols), we cannot use a timestamp for the different files. If we would use
the same filename every time, all telemetry data would be overwritten on reboot, which
can happen. Because of that, we use a random base folder for each file, generated by
reading noise from the floating analog input pins and converting this noise to a 16 char
hash. A sample filename with base folder would look like this:

Wkep49ank3J30enrp​/​gps​.​csv

Wkep49ank3J30enrp​ represents the base folder name lasting throughout the program
lifetime (it will be different on next boot).

gps.csv​ is the telemetry file containing the decoded GPS data.

The properties currently logged are:

● GPS data: ​gps.csv
● Temperature data: ​temperatures.csv
● Acceleration data: ​acceleration.csv
● CAN data: ​can.csv
● System parameters (uptime, free memory, cpu usage): ​system.csv

28

File format
The telemetry data is saved as a plain CSV file, with the data timestamp (a simple ​millis()
function keeping track of the time since microcontroller boot) as the first data point. All
other data is attached to the string after the timestamp.

A sample dataset for the GPS data would look like this:

10830​|​46.546​|​11.594​|​260​|​7​|​1.24​|​18.9​|​18​-​04​-​2018​_09​:​24​:​13​|​54839​|​124

The individual data entries represent the following categories:

10830​: The expired milliseconds after microcontroller boot.

46.546​: Current GPS latitude in WGS84.

11.594​: Current GPS longitude WGS84.

260​: Altitude in meters.

7​: Amount of satellites currently visible (needs to be at least 4).

1.24​: Horizontal dilution (position accuracy).

18.9​: Horizontal speed in km/h.

18-04-2018_09:24:13​: Current time provided by the GPS antenna.

54839​: Number of NMEA sentence chars processed.

124​: Number of sentences with a checksum error.

This format can vary depending on the different categories, but the first data point will
always be the ​millis()​ timestamp. The pipe symbol (“|”) is used as a separator.

29

Data transmission
The most important data gets transmitted to the message relay via serial communication,
to then be transmitted via a socket connection to the iOS app. Data transmission intervals
work like with data logging, so that a boolean flag is used to keep track of new data. The
serial communication line from the main microcontroller to the message relay works with a
speed of 9600 baud, which is a tradeoff between speed and reliability.

Data format
The data is sent to the message relay in different categories like with logging so that
relevant data is bundled. Each message starts with a dollar sign (“$”), followed by the type
of the message, a colon (“:”) and then the data. The data is succeeded by another dollar
sign and then the checksum. The message relay checks the integrity of the message and
only forwards it to the client if the message is valid.

A sample message would look like follows:

$GPS​:​46.546​,​11.594​,​260​,​7​,​1.24​,​9​,​24​,​13​$e

The individual data entries represent the following categories:

$GPS​: GPS message identifier, depends on the data category

46.546​: Current GPS latitude in WGS84.

11.594​: Current GPS longitude WGS84.

260​: Altitude in meters.

7​: Amount of satellites currently visible (needs to be at least 4).

9​: Current time hours

24​: Current time minutes

13​: Current time seconds

54839​: Number of NMEA sentence chars processed.

124​: Number of sentences with a checksum error.

$e​: Message end separator with checksum character (​“e”​)

30

This message format was chosen because using dollar signs (or any other uncommon char)
as separator allows us to easily identify a valid message and the start and end.

Various messages are available and identified using a 3 character long string. The following
data identifiers are currently used:

GPS​: Identifies GPS data

TMP​: Temperature data

ACC​: Accelerometer data

CAN​: CAN bus data

Checksum
Compared to a TCP socket connection, serial does not guarantee message order and
integrity. This becomes obvious especially at high baud rates, where chars get flipped or
lost. To combat this problem, an XOR checksum is added to each message. This checksum
gets compared to a computed checksum on the message relay, and the message is only
forwarded to the iOS app if the transmitted and computed checksums match.

The checksum is computed by XOR-ing each character in the message, including the dollar
signs and identifier. The XOR function looks like this:

unsigned​ ​char​ getCheckSum​(​char​ ​*​string​)​ {
 ​unsigned​ ​char​ XOR ​=​ ​0;

 ​for​ ​(​int​ i ​=​ ​0​;​ i ​<​ strlen​(​string​);​ i​++)​ {
 XOR ​=​ XOR ​^​ ​string​[​i​];​ ​// NOLINT
 }

 ​return​ XOR;
}

Both sides need to use the same checksum function for this to work. The checksum is not
used on the iOS app but the message relay still forwards it, since string manipulation uses
precious CPU cycles on our Wemos D1 microcontroller, which is not suited for such
operations.

31

Data evaluation
We log all data so that we can evaluate it later on, should there be a failure of a component
or should we decide to tweak some software parameters. For that to work, we need to be
able to collect a lot of data really fast and save it in a database to be able to analyze or
graph it.

macOS data converter
A simple macOS command line converter application written in Swift reads all CSV files,
converts them into SQL format and inserts it into the database. The program can be
launched using the following command:

./​converter ​import​ ​<​base​ folder​>​ ​<​database connection ​string>

A sample usage with the telemetry data used throughout this document and a PostgreSQL
database would look like follows:

.​/converter import /​Volumes​/​GoKart​/​Wkep49ank3J30enrp​ psql​:​//localhost@user:pass/telemetry

This command reads all available telemetry files on the microSD card called ​GoKart​, with
the base data path ​Wkep49ank3J30enrp​.​ It then connects to a PostgreSQL database
listening on ​localhost​ with the user/password combination ​user:pass and​ inserts it
into the database called ​telemetry​. This command requires that the schema in the
specified database is already available.

Should the schema be missing, it can be created by executing the following command:

.​/converter schema psql:/​/​localhost@user​:​pass​/​telemetry

32

PostgreSQL database
For my testing purposes, I used a PostgreSQL database since I had the most experience
with it and it offers useful features like triggers and functions.

Instead of installing the database locally on my computer, I decided to install it in a Docker
container so I can destroy and rebuild it if I want to clear all data and restart from scratch.

The PostgreSQL database can be launched using the following command, provided that
Docker is installed:

docker run ​-​it ​--​rm ​--​link network​:​postgres postgres psql ​-​h postgres ​-​U postgres

This command creates a throwaway PostgreSQL container (meaning that all data will be
lost when the container is stopped) in a network called ​“network”​, with hostname
“postgres”​, username ​“postgres” and database ​“postgres”​. It also automatically
connects to the databases ​psql command line interface, where you can execute SQL
commands.

If you want to keep the data you added to the database, you can mount an external volume
and put the PostgreSQL files on it. Volumes persist even after the container is stopped.

Testing and validation

Testing on the Arduino platform
Unfortunately, no proper first-party solution for running unit tests is available for the
Arduino platform. Some third-party solution exist, but none are compatible with Teensy 3.5
microcontrollers.

A third party testing suite for the ESP8266 platform is available, but since the code is really
simple and only contains default the ​setup() and ​loop() methods, unit tests were left
out (since those methods cannot be mocked).

Another challenge when developing for Arduino was the lack of a proper debugging or
stack trace solution. This made developing for the Teensy 3.5 microcontroller especially
frustrating since I often encountered OOM (Out Of Memory) errors caused by a third party
library, where the microcontroller would simply hang without any message or kernel dump.
A physical reboot by unplugging the power was necessary to restart it.

33

Fortunately, the ESP8266 microcontroller displays a kernel dump when a segmentation
fault or some other race condition occurs. This makes debugging relatively easy since the
kernel dump can be converted back to a readable method call stack when building the
code with symbols enabled (enabled by default). A raw kernel dump looks like this:

Exception​ ​(​0​):​ epc1​=​0x402103f4​ epc2​=​0x00000000​ epc3​=​0x00000000​ excvaddr​=​0x00000000
depc​=​0x00000000

ctx​:​ sys
sp​:​ ​3ffffc10​ ​end​:​ ​3fffffb0​ offset​:​ ​01a0

>>>​stack​>>>
3ffffdb0​:​ ​40223e00​ ​3fff6f50​ ​00000010​ ​60000600
3ffffdc0​:​ ​00000001​ ​4021f774​ ​3fffc250​ ​4000050c
3ffffdd0​:​ ​400043d5​ ​00000030​ ​00000016​ ffffffff
...
3fffff80​:​ ​4021c0b6​ ​3fffdab0​ ​00000000​ ​3fffdcb0
3fffff90​:​ ​3ffecf40​ ​3fffdab0​ ​00000000​ ​3fffdcc0
3fffffa0​:​ ​40000f49​ ​40000f49​ ​3fffdab0​ ​40000f49
<<<​stack​<<<

The number after the “​Exception​” keyword indicates the type of exception (​0​), in this case,
a ​IllegalInstructionCause​. This kernel dump can be symbolized using the built-in
exception decoder in the Arduino IDE, making it readable for humans. It will then show the
method where the exception happened.

ESP8266 offers an experimental debugger built into the Arduino IDE, but at the time of
writing this document, I was unable to get it to work.

iOS Testing
Xcode and Swift offer support for writing both unit and UI tests. Test integration can be
added automatically when creating a project or retrofitted later on if needed.

Tests need to be written in an own class, which needs to subclass the ​Cocoa method
XCTestCase​, which marks it as a test class. The test class can contain however many test
methods as needed. A basic testing method, comparing 1 to 1 can be written as follows:

func testOneIsOne​()​ {
 ​XCTAssertEqual​(​1​,​ ​1​,​ ​"1 should always equal 1")
}

34

Theoretically, this test should never fail. If it does (using different values), Xcode
automatically creates a test exception breakpoint, which halts the debugger at the place
the assertion failure occurs, so the failing code can be debugged.

At the time of writing this document, the iOS app contains unit tests for the socket data
receiver and the connection handler. No UI tests were written due to time constraints.

Tweaks and improvements
Testing the go-kart resulted in a couple of proposed improvements to make collecting the
various data even more reliable. Since we were time-constraint, these improvements have
not been implemented and are purely speculative.

The proposed improvements include:

● Replace the reed-switch based RPM meter with an IR-based probe, since the reed
switch requires a magnet to be mounted on the rear driving axle. This magnet
causes an imbalance. Using physical switches also requires software bouncing,
which limits the measurable revolution at 1200 RPM with a 50 ms debounce time.

Using IR based RPM measuring removes axle imbalance and the need of
debouncing.

● Replace the Wi-Fi-based data transmission with a physical one. Since Apple requires
being registered to the MFi-program, this solution is only practical in theory.

A Wi-Fi data transmission adds latency (around 100 ms in our case) and adds
potential points of failure. A physical connection is both faster and more reliable. A
potential drawback is a physical connection requiring the phone to be mounted on
the steering wheel at all times since it needs to be connected to a cable.

Experience and closing
Planning and implementing this project has improved my knowledge of both the software
and the hardware side.

Working with so many different sensors and data interfaces was a real challenge and made
me more familiar with technologies used when working with microcontrollers or other
low-level devices. I already had some experience working with the Arduino platform, but
nothing came close to the complexity of this project. Building the data communications
with a relay device in between was first thought to be a small feat, but resulted in hundreds
of code lines to get the reliability to a point where we could make it through a simulation
race without disconnects.

35

Where to go from here
Since this go-kart was paid by AutoTest GmbH, it will ultimately be handed over to their
respective owner as a personal vehicle after all development and testing are done.

The app and hardware design will also be handed over to Autotest GmbH, where they can
install it on their personal phone by flashing the ​GoKart.ipa​ package, which is the built
application.

Since I won’t be available to improve and maintain this project in the future, the code will
be available as Open Source Project.

We plan to complete our first full race mid-July at the Safety Park in Laives, IT, where this
project will finally, after hundreds of hours of hard work, come to an end.

36

Sources
These are the sources used to compile this project description. All information from these
sources was taken between 10. of April and 25. of April.

https://www.sparkfun.com/products/14055

https://en.wikipedia.org/wiki/Arduino

https://en.wikipedia.org/wiki/IOS

https://en.wikipedia.org/wiki/MacOS

https://developer.apple.com/programs/mfi/

https://www.pjrc.com/store/teensy35.html

https://en.wikipedia.org/wiki/Swift_(programming_language)

https://en.wikipedia.org/wiki/ESP8266

https://www.espressif.com/en/products/hardware/esp8266ex/overview

https://www.sparkfun.com/products/12577

https://www.sparkfun.com/products/retired/11859

https://www.sparkfun.com/products/11028

https://www.sparkfun.com/products/11050

https://www.sparkfun.com/products/11058

https://www.sparkfun.com/products/132

https://www.sparkfun.com/products/13262

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

https://en.wikipedia.org/wiki/I²C

https://learn.sparkfun.com/tutorials/i2c

https://learn.sparkfun.com/tutorials/serial-communication

https://en.wikipedia.org/wiki/Serial_communication

https://en.wikipedia.org/wiki/CAN_bus

https://platformio.org

https://www.sparkfun.com/products/14055
https://en.wikipedia.org/wiki/Arduino
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/MacOS
https://developer.apple.com/programs/mfi/
https://www.pjrc.com/store/teensy35.html
https://en.wikipedia.org/wiki/Swift_(programming_language)
https://en.wikipedia.org/wiki/ESP8266
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://www.sparkfun.com/products/12577
https://www.sparkfun.com/products/retired/11859
https://www.sparkfun.com/products/11028
https://www.sparkfun.com/products/11050
https://www.sparkfun.com/products/11058
https://www.sparkfun.com/products/132
https://www.sparkfun.com/products/13262
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/I%C2%B2C
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/serial-communication
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/CAN_bus
https://platformio.org/

37

https://en.wikipedia.org/wiki/Global_Positioning_System

http://www.gpsinformation.org/dale/nmea.htm

https://gps.gov

https://draw.io​ (Flowcharts)

https://en.wikipedia.org/wiki/Global_Positioning_System
http://www.gpsinformation.org/dale/nmea.htm
https://gps.gov/
https://draw.io/

