

ChemStruct

Gerald Mahlknecht

TFO “Max Valier“ Bozen

2016 – 2017

Tutors: Prof. Michael Wild & Prof. Alexander Coccia

Contents

I

Contents

Contents .. I

List of Figures ..III

1. Introduction .. 1

1.1 Chemical Background.. 1

1.1.1 Skeletal Formula .. 1

1.2 The Problem .. 2

1.3 The Idea .. 2

1.3.1 Birth of the Idea ... 2

1.3.2 The Target Group .. 2

1.4 The Motivation ... 2

1.5 The Goal .. 3

2. ChemStruct .. 4

2.1 User Interface .. 4

2.1.1 Why the Dark Design? ... 5

2.2 Use Cases ... 5

2.2.1 Draw .. 5

2.2.2 Delete .. 6

2.2.3 Change Bounding .. 6

2.2.4 Cyclic Components .. 6

2.2.5 New File ... 7

2.2.6 Save (As) ... 7

2.2.7 Open .. 8

2.2.8 Print ... 8

2.2.9 Validation and Error Messages .. 8

2.2.10 What Happens if an Error Occurs? .. 8

2.2.11 Nomenclature .. 9

3. Get Technical ... 9

3.1 Atom ...10

3.2 Bound ...11

3.3 Increment and Decrement Bounds ...12

3.4 StateHandler – Current State ...12

3.5 DrawException ...12

3.6 Saving and Opening in XML ...13

Contents

II

3.7 Why not XStream or JAXB ...13

3.8 Preferences ..14

3.8.1 Why not Preferences? ..14

3.9 Algorithms of Nomenclature ...14

4. Schedule and Development ...15

4.1 Spiral Model ..16

4.1.1 Why the Spiral Model?..17

4.1.2 Fixing Goals ..17

4.1.3 Detecting and Resolving Risks ...18

4.1.4 Development and Testing ...18

4.1.5 Planning the Next Iteration ...18

4.2 Eclipse (IDE) ...19

4.3 Dropbox vs ownCloud...19

4.4 JavaFX Scene Builder ..19

4.4.1 Advantages ...19

4.4.2 Disadvantages ..19

4.5 Notepad++ ..20

4.6 Paint.NET ...20

5. Used Technologies ...21

5.1 Java ..21

5.1.1 Why Java? ..21

5.2 JavaFX ...21

5.2.1 MVVM ...22

5.2.2 JavaFX vs Swing ..22

5.2.3 FXML ..23

5.2.4 CSS ..23

5.3 XML ..24

5.4 JUnit ...25

6. Conclusion ..26

6.1 Restrictions ...26

6.2 Possible expendabilities ...26

7. Appendix ...27

7.1 Bibliography ... XXIX

List of Figures

III

List of Figures

Figure 1: Example of C and H atom bounds .. 1

Figure 2: Skeletal formula of 2-methylbutane .. 2

Figure 3: Start layout of ChemStruct .. 4

Figure 4: Use case diagram ... 5

Figure 5: Context menu for bounds ... 6

Figure 6: Example of possible cyclic components 7

Figure 7: Activity diagram of the save process .. 7

Figure 8: Printerjob print dialog .. 8

Figure 9: Visualization of user made errors ... 9

Figure 10: Example of a named molecule ... 9

Figure 11: C atoms and their references ..10

Figure 12: Inizialisation of an atom object ...10

Figure 13: Calculation of the bounds angle ..11

Figure 14: Step-by-step creation of an atom bound11

Figure 15: Possible multiple bounds ...12

Figure 16: XML code for a simple bound ..13

Figure 17: A*-algorithm for the longest path ...14

Figure 18: Gantt diagram of the program schedule15

Figure 19: Business Object Model ..16

Figure 20: Spiral model ...17

Figure 21: MVVM-pattern ...22

Figure 22: Imports and controller definiton in FXML23

Figure 23: Differnt ways to set CSS styles ..24

file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702264
file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702265
file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702269
file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702271
file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702273
file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702275
file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702276
file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702280
file:///C:/Users/geral/Dropbox/Facharbeit_Mahlknecht_Gerald.docx%23_Toc481702284

Introduction

1

1. Introduction

1.1 Chemical Background

Each substance consists of molecules, which are built from atoms and their bounds.

A chemical structural formula is one way to represent these chemical compounds in

a chart. It shows the molecular structure formed by the arrangement of the atoms.

Each structural formula has a special name, which can be identified with chemical

nomenclature. There are different normed notation modes. The most used are the

“Lewis structures”, the “Condensed formulas” and the “Skeletal formulas”. The first

two notations are mostly used for small molecules. For my project, I used “Skeletal

formulas”. From the huge number of different molecules in the first version of my

program I focused on the hydrocarbons, which are part of the organic chemistry.

These molecules consist only of carbon (C) and hydrogen (H) atoms. They can be

divided in two classes, i.e. chain configurations and cyclic configurations. A C atom

always connects with four other atoms. The number of the single bounds depends on

the other atom and on the number of not used valence electrons. Between two C

atoms can be a single bound, a double bound or a triple bound. All free valence elec-

trons are bound with H atoms, which have only one valence electron.

1.1.1 Skeletal Formula

Skeletal formulas are a graphical representation of molecules. They only have two

dimensions and do not show valence electrons and other atoms than C atoms. Other

atoms are represented by element symbols and the bounds by a solid line. Double

bonds are shown with two lines, triple bonds with three lines.

Figure 1: Example of C and H atom bounds

Introduction

2

1.2 The Problem

Studying chemistry at school I had problems in understanding my own drawings of

hydrocarbon structural formulas. Most of the time I ended up searching for some for-

mulas on the internet that could be the ones I needed. I had difficulty in finding the

right name and I’m sure so did many other students too.

1.3 The Idea

1.3.1 Birth of the Idea

Although I do not have chemical classes any longer, I sometimes like to look up the

name of a specific hydrocarbon structural formula. I tried out different software but

with limited subject-specific knowledge it was a hard process to get the result I

wanted. That was the point when I decided to create my own program to name simple

structural formulas for hydrocarbons with just a few clicks.

1.3.2 The Target Group

It is quite simple to draw, save and name hydrocarbon chemical structure formulas

with my software. This means the whole system is based on non-complex structural

formulas. The target group is pupils in their first two years of chemistry lessons. For

school purposes the notation “Skeletal formulas” is most frequently used. That is why

I decided to focus on them.

1.4 The Motivation

I got motivated by Coccia Alexander, my former chemistry teacher. he was looking

for someone to develop a software for him and his students that makes it possible to

Figure 2: Skeletal formula of 2-methylbutane

Introduction

3

draw chemical structural formulas on a blank page, to name them afterwards and to

print them for laboratory reports or to use them as a learning tool. There are some

alternative applications that have similar functions but none of them focuses on the

basics or is even easy to understand for a non-professional person.

1.5 The Goal

I wanted to create a software that makes the process of drawing and naming struc-

tural formulas fast and simple. As a result, I wanted to provide a system with a “learn-

ing-by-doing-effect”. Therefore, I created a window application named “ChemStruct”.

ChemStruct

4

2. ChemStruct

2.1 User Interface

Figure 3: Start layout of ChemStruct

After starting the application, the user interface appears. On the right-hand side of

the screen is the core element, which is the drawing area. To its left is the toolbar with

the most important editing tools. Underneath the tools is a status bar which shows

the currently selected tool. By switching tool, the status bar also changes. The format

ChemStruct

5

tab is enabled under different selection conditions and provides object-specific func-

tions such as changing the bound size. The menu bar contains the second level op-

erations like reset, save options etc.

2.1.1 Why the Dark Design?

I spent a lot of time improving the user interface. My aim was to make it look pleasant

and manageable. The user should not get the first impression of a vast and complex

application. I realised that not only does the array of the components make a good

effect but also the right mixture of colours. I was inspired by dark-shaded developing

environments like Eclipse and Android Studio. The colour management is the result

of a mixture of different shades of grey.

2.2 Use Cases

Figure 4: Use case diagram

2.2.1 Draw

One of the core features of ChemStruct is the drawing process of molecules. Once

the user started the program he/she is in front of a wide drawing area. Simply by

selecting the “drawing-tool” and clicking in this drawing area, it is possible to start

designing a molecule. He/she can extend it to another bound by clicking on the ellip-

tical objects, which represent C atoms. Just clicking on them will manually set a de-

fault angle for the new bound. By dragging the mouse to the desired position after

clicking on the requested atom-object, a new bound is created with this angle. Each

C atom can have a maximum of 4 bounds. The manually calculated angle depends

ChemStruct

6

on the number of bounds at the moment of adding a new one and of the angle of

these bounds.

2.2.2 Delete

A context-menu is shown over the selected object after right-clicking on it. Depending

on the type of the object it provides different operations like the “delete-option”, which

is implemented for all kinds of drawing components. The problem at this point is that

each component is bound to others and could be a central branch. I created an algo-

rithm that handles the deleting process and decides which parts have to be deleted

and which do not, according to the given situation.

2.2.3 Change Bounding

A molecule can be formed by single, by double and by triple bounds. Therefore, the

context-menu for bounds has a sub-menu to select the kind of bound. With regard to

the number of valence electrons the maximum bound type is a triple bound.

Figure 5: Context menu for bounds

2.2.4 Cyclic Components

As an important part of molecules cyclic components must not be excluded. To opti-

mize their drawing process the “drawing-tool” supplies a range of pre-built cyclic mol-

ecule components. By selecting one of the given options from cyclo propane to cyclo

octane, they can be created in the drawing area like normal bounds. In this case, the

selected angle defines the angle of the first bound. A sub-option of cyclic components

is the “aromat-function”, which means, that each second bound of the cyclic object

gets automatically equipped with a double bound.

ChemStruct

7

2.2.5 New File

“New file” asks the user in case of unsaved content in the drawing area if he/she

wants to save all current changes. After that, the reference to the persistent instance

of the file is overwritten with an empty file and thus the drawing area is cleared.

2.2.6 Save (As)

To handle the save option I decided to design the function following other popular

programs. After pressing the save-button the system checks if a saved instance ex-

ists for the current opened file. If there is a saved instance, the file gets overwritten,

if there is not, a “save as” dialog appears and the preferred file direction can be se-

lected. This flow accelerates the process of saving and provides the possibility to

save more than one instance of the object. All files are saved in standard XML-For-

mat.

Figure 7: Activity diagram of the save process

Figure 6: Example of possible cyclic components

ChemStruct

8

2.2.7 Open

Equal to the “new file” operation the “open” operation asks the user if he/she would

like to save his/her changes if there are any. The saving process is the same as

mentioned before. Afterwards a file chooser enables to select the file to be opened

and its content is displayed in the drawing area. In order to avoid confusion, I added

an XML-file-filter for the saving and opening process.

2.2.8 Print

Due to the big size of the drawing area, which the user might not want to print as a

whole, I created a selection tool to select the desired content. A hint shows up in the

error and status field. Because of the necessity of a printable file which is not written

in XML, I used a choosing tool that provides a PDF-print function.

2.2.9 Validation and Error Messages

There is a runtime validation of the drawing area that denies intersections of atoms

and bounds and several other possible occurring errors.

2.2.10 What Happens if an Error Occurs?

To ensure a continuous working flow the system catches occurring exceptions and

handles them. If these errors are created by the user like in the case of an intersection

or an atom with too many bounds, the system reacts with an error message that

Figure 8: Printerjob print dialog

Get Technical

9

shows up below the drawing area and sets the colour of the affected element to red.

Each created component gets verified.

Figure 9: Visualization of user made errors

2.2.11 Nomenclature

The nomenclature can be made by selecting a molecule with the “molecule tool” or

with the function in the menu bar. Its name appears underneath the selected object.

This name disappears after re-editing the molecule to avoid inconsistency.

3. Get Technical

For the drawing as the main and most complex process of the application I want to

give a more detailed overview of the technical implementation. To make the compo-

nent understandable it is divided up into its chronological sub-processes.

In reality a molecule is made of atoms and their bounds. I tried to implement this fact

in my system as closely as possible to reality. There are objects for atoms and object

for bounds. An atom knows its bounded atoms through the bound. There is no direct

Figure 10: Example of a named molecule

Get Technical

10

reference between atoms. The positive side-effect of this is flexibility. The process of

handling the number of atoms bounded gets adaptable due to the fact that each atom

can be bound to a fixed number of other atoms according to its element. Not only can

atoms but also bounds and their co-existing bounds in a multiple bound be handled

more easily if they are separated.

Figure 11: C atoms and their references

3.1 Atom

Everything starts with a single atom. A mouse-pressed-listener detects the x- and y-

coordinates in the drawing pane and creates a new atom object with the coordinates

in its centre. Atom extends Circle (javafx.scene.shape.Circle), which is defined by

layout coordinates and a radius. It is important to point out that at this point this object

has no bounds yet. Now the first validation begins. Atoms as well as bounds have a

method called “checkBounds” which checks if the object intersects other objects by

parsing all objects in the pane. If the method returns “false” the new atom object is

removed from the pane and set on null to avoid further complications. At this point

the system throws a “DrawException”, which is displayed on the status label.

Figure 12: Inizialisation of an atom object

Get Technical

11

3.2 Bound

If the validation method returns “true” the atom object is still set. A mouse-release-

listener now registers once again the mouse coordinates at the moment of releasing.

The method “addLine” is called on the atom object with the new coordinates as pa-

rameters. This method creates a new bound object and handles the linkage of the

atom and the bound. The bound class extends Line (javafx.scene.shape.Line). Lines

and their extended objects are a bit different in handling compared to other JavaFX

shapes. They do not only have one point of reference with x- and y-coordinates but

one start and one end point. Compared to the new coordinates and the coordinates

of the object on which the method is called the angle gets calculated and set. Finally,

it is added to the pane. As on the atom object, now on the bound object the “check-

Bounds”-method is called. If it returns “false” the bound and its atom are removed

from the pane and an exception is thrown. If there is no item intersecting but the

bound’s own atom, the bound tries to add another atom at its second ending. The

process is the same as described in “addLine”. This step-by-step-validation makes it

possible to stop the drawing process at the point when the error occurs and not after

running the whole process.

Figure 14: Step-by-step creation of an atom bound

Figure 13: Calculation of the bounds angle

Get Technical

12

3.3 Increment and Decrement Bounds

To change bound size, I did not really change anything but created or deleted bounds.

The original approach was to just change the style of the bound object which was

dismissed due to problems of missing style attributes in the superior object Line. If

two atoms are bound through a multiple bound, the individual lines could exist without

each other. They do not differ in their style or their core attributes. Each multiple

bound has a main-line with listeners. All other lines have a reference of this line and

in case of a mouse event it is consumed and forwarded to its main-line.

Figure 15: Possible multiple bounds

3.4 StateHandler – Current State

I tried to outsource everything possible to the single objects. That is why it is important

that each of them knows which tool in the toolbar is selected. I created a static state

handler which is controlled by the tool bar and is accessible for all components with-

out initialising it. Controlled by the tool bar in this case means that the tool bar

changes the current state. My intention was to avoid errors with wrong states. There-

fore, I created an enumeration containing the possible values.

3.5 DrawException

Particularly for errors made by the user I developed a type of exception. It extends

java.lang.Exception. For reasons of consistency I left the functionality as it originally

was. For the output function in the status bar I added an optional Label which can be

set over a setter method. Only if the Label is set, is the exception message written in

the status bar. At this point I spent a lot of time to make the user aware of obscurities.

Once an error occurred, it was displayed in the status bar, but it did not disappear

until the next error occurred. Therefore, every time something goes wrong I initialise

a timer1, which hides the status bar after a set time.

1 (Oracle, Oracle 2015)

Get Technical

13

3.6 Saving and Opening in XML

One of the last implemented features was the “saving” and “opening” operations. I

already mentioned the work flow so now I would like to explain the functionality. The

objects in the drawing pane are listed as a non-standalone tag with the tag names

“LineComponent” for bounds and “Component” for atoms. Its attributes are its hash

code, coordinates, in case of a bound object start and end coordinates, if existent the

angle and the bound size in case of bounds. The sub elements are standalone tags

and represent bounds and/or atoms corresponding to the parent tag. They are only

defined through their hash code. The sub-elements are necessary to rebuild the orig-

inal connections among the saved elements. By calling the save method all compo-

nents in the drawing pane create their own XML code section thanks to the “toXML”

method.

Figure 16: XML code for a simple bound

During the “opening” process the file is parsed with an XML parser. The parser is

created on a base frame put at disposal in raw data by the information technology

“Metakurs”2. The parsing process is repeated twice. In the first turn only the objects

are set with their properties, which are saved in the attributes and afterwards added

to the drawing pane. During the second turn the parent elements get their sub-ele-

ments set. Due to the fact that all items now exist in the system, they can easily be

connected by using their unique hash code.

Both, “saving” and “opening” are outsourced to a class called “DocumentHandler”.

This class also has the function to keep the reference to a saved file if there is one.

3.7 Why not XStream or JAXB

Both XStream3 and JAXB4 are libraries that provide features to marshal objects to

XML and unmarshal them back. After many attempts, I found out that those libraries,

2 (Wild, eXtensible Markup Language (XML) kein Datum)
3 (Jakob, code.makery 2013)
4 (Jakob, code.makery 2015)

Get Technical

14

even if there are tutorials particularly for the usage in JavaFX, are not compatible with

objects which extend JavaFX Nodes.

3.8 Preferences

I have seen different tutorials in which the path is saved with a class called “Prefer-

ences”. Preferences5 are saved at different places depending on the operating sys-

tem. Those saving locations have a limited amount of memory which is relatively

small, but big enough to contain an absolute path.

3.8.1 Why not Preferences?

I decided to realise the caching of the file’s reference with a simple string containing

the absolute file path of a saved instance. I did this, simply because I found out that

depending on the computer running the program, an error could occur by using Pref-

erence. The solution would be an added entry in regedit. Due to the fact that users

do not have a development console they could not even look up the error and would

be surprised about this bug.

3.9 Algorithms of Nomenclature

To name a molecule first of all a molecule has to be selected. To save memory not

all molecules are cached. The implemented molecule object can make one molecule

reference at a time. If it is unset its reference is on null. By clicking on an atom with

the “molecule” tool the molecule starts creating itself by calling several recursive

methods. To follow the nomenclature standards the first step is to search the longest

5 (O. Unknown, Oracle 2016)

Figure 17: A*-algorithm for the longest path

Schedule and Development

15

chain. I implemented this with a modified A*-algorithm with the same metric for all

knots. In the best case this method returns two paths with the same length, which

both represent the same path only mirror-inverted. There are cases in which two dif-

ferent paths with the same length are detected. For these exceptions, I needed to

implement a second method to filter out the right one. The right one means the one

with the longest side chain has a higher priority. The now filtered out longest path has

two possible beginnings. Once again in a recursive method starting from the two start

points until reaching the end of this chain, all side chains and their position are de-

tected. The algorithm finds out from which side the nomenclature would result smaller

numbers. Following the nomenclature rules at this point a last algorithm creates the

final name out of all detected side chains, their position and the longest chain. The

single components are set in alphabetic order and presented appending an offset

underneath the atom object with the biggest y-coordinate.

4. Schedule and Development

The ChemStruct-project is my first complex project. Unfortunately, I could not stay on

schedule due to some wrong assessments.

Figure 18: Gantt diagram of the program schedule

To show all important objects I created a business object model. The most important

parts of it are the “Atom” and the “Linkage” objects. Both extend “SuperComponent”,

a superior object to make conversions easier to handle. “Atom” and “Linkage” have a

direct reference and a composition. This means a “Linkage” has to have two “Atoms”.

Another core object is “Molecule” which consists of a flexible number “Atoms” and

“Linkages”. Due to the fact that a molecule exists no longer if it changes, there is a

Schedule and Development

16

composition too. Except the “DrawException” and the “MainController” all other clas-

ses are static file or data handling classes. For example, the “Factory” class is a static

class which creates cyclic components.

Figure 19: Business Object Model

4.1 Spiral Model

As it is evident from the Gantt diagram above I developed this project with the spiral

model. The spiral model is a process model for software projects and is an advance-

ment of the waterfall model. It divides the main planning and developing process into

iterations. Each iteration is made up of four sub processes: fixing goals, detecting and

resolving risks, development and testing and planning the next iteration.

Schedule and Development

17

Figure 20: Spiral model

4.1.1 Why the Spiral Model?

The advantage of this development model is the step-by-step development. The fo-

cus lies on the risk management and qualifies this model for complex projects. The

main reason I selected this kind of model is to have the possibility to add functionali-

ties one by one and have a base on which I can later work on. I will explain in the

following paragraphs how I worked with the model:

4.1.2 Fixing Goals

At the time I designed the Gantt project, I divided up the main problem into two big

sub problems, the drawing logic and the program logic. However, just after a short

period of time I realised that each of them had to be divided up into really small frag-

ments and that there also had to be background algorithms for the molecular logic. I

began to define the goals for the drawing process. First of all, a single linkage of two

atoms and their bound in a fixed angle should be constructible. In the next two itera-

tions, I set the goals on the implementation of the connection among the objects and

on a method that can calculate a changeable angle and the angle of a third bound. I

fixed goals for the editing processes all in one iteration except for the bound change

because the effort was comparatively small to the other iterations. After the following

iteration with the changeability of the bounds and the development of it I continued

with the program logic. My first goals were the development of algorithms for the

Schedule and Development

18

molecular logic. The following aims were a rough draft of the layout and the function-

ality of the toolbar. The next-to-last goal was a complete functional interface with a

smart design. To round off the work flow I also fixed goals for shortcuts and context

menus. According to the planning process I had different possible ways for the final

implementation and before I started working on it, I did some research on alternatives

or already existing libraries. An example of this was the “PrinterJob”-library6, which

saved me hours of time.

4.1.3 Detecting and Resolving Risks

I worked with a series of software components which were unknown to me and there-

fore I had several problems with detecting possible issues and risks. Because of this

I decided to work with prototypes in the second phase. In outsourced projects with

their own packages for the complex iterations I tried to find the best way to implement

the goal. The prototypes were all separated from the main program and were based

on the core functions. Detected risks were, for example, stack overflows during the

recursive parsing of big molecules. I had to make the data of each method call smaller

and smaller and had to outsource the different actions into several consecutive re-

cursive methods.

4.1.4 Development and Testing

First of all, I tried to implement the prototype one-to-one. Afterwards I tested the new

component for all its respective use cases. If one test failed and if I had to change a

detail all other tests had to be carried out again. As test tool, I used JUnit7, a test

framework for Java applications.

4.1.5 Planning the Next Iteration

The planning process of a following iteration was the most time-consuming part after

the implementation and testing phase. Each step was designed from scratch on pa-

per first. Work flows and procedures of operations were all sketched before I contin-

ued to work on. Finally advantages and disadvantages of the different possible capa-

bilities were assessed.

6 (Oracle, Oracle 2015)
7 (Wiki 2017)

Schedule and Development

19

4.2 Eclipse (IDE)

Eclipse is an open source IDE8. The computer programming environment, which is

mostly written in Java, supports several programming languages like C, C++, D, Perl,

PHP, and Python. Its primary area of operation is the development of Java applica-

tions. I have chosen this environment because of its user-friendly operating mode

and of its support of various Java-add-ons I needed. I used it for the complete logical

in Java written part of the project.

4.3 Dropbox vs ownCloud

The file-hosting service Dropbox9 founded in 2007 eased my work a lot. I used it to

share my data among my other devices and to make it accessible away from my

working station. At the beginning of my project I worked with an alternative called

ownCloud10. Like Dropbox ownCloud is a file-hosting service but in contrast to Drop-

box it can be provided by a private server due to its open-source property. Unfortu-

nately, I had to switch platform because of problems with the port forwarding to make

it accessible outside the local network.

4.4 JavaFX Scene Builder

The scene builder which JavaFX provides is a graphical tool to design a UI11 by drag-

ging and dropping the single components. It is possible to modify properties, set style

sheets, set Ids and define listeners for event handling. As a result, the tool generates

a FXML file (explanation: 5.2.3) with all properties.

4.4.1 Advantages

The design process is simplified a lot by a preview function which shows the window

after development without starting the Eclipse-VM12. FXML works a lot with margins

and paddings saved in CSS. Due to the auto-generated FXML code their structure

and syntax is correct.

4.4.2 Disadvantages

During the development process, I had some problems with bugs caused by editing

the FXML-file which was not refreshed in the scene builder and afterwards could not

8 IDE – Integrated Development Environment: tool for software development
9 (Dropbox kein Datum)
10 (ownCloud 2017)
11 UI – User Interface
12 Eclipse–VM - Eclipse Virtual Machine

Schedule and Development

20

be opened as a result of the wrong syntax. Another problem is the runtime visualisa-

tion of the components. Depending on the resolution of the screen the scaling was

not correct. On the one hand on a 4k display the UI was too small to work with and

on the other hand the preview was non-proportional and I had to develop it by parsing

the FXML file with the Eclipse-VM.

4.5 Notepad++

Notepad++ is a free text and source code editor. I used it for the development of the

CSS layout files. In contrast to Eclipse it has no fixed word lists for autocomplete

proposal but it saves foregoing words and code segments in the autocomplete pro-

posal for the current file. This is very time-saving in case Eclipse does not know pro-

posals for FX-components.

4.6 Paint.NET

All illustrations, logos and icons shown in my application were designed with

paint.NET. I decided to use the freeware graphic editor instead of Photoshop because

of its simplicity in usage and its adaptation to my purposes.

Used Technologies

21

5. Used Technologies

5.1 Java

Java is an object-oriented and class-based programming language released in 1995

by Sun Microsystems. Its syntax is similar to the C and C++ syntax but in contrast to

them Java has only a few low-level facilities. Its code can be run on every device

supporting the JVM13 which, beside desktop applications, makes it very useful for

client-server and web applications. Due to the JVM it provides WORA14. Nowadays it

is one of the most popular programming languages with a report of 9 million client-

server-developers in 2016 (Wikipedia).

5.1.1 Why Java?

I decided to write my project code in Java due to several aspects. It was important to

me that the application is platform-agnostic. The target groups are pupils who work

at school or at home. At school users often do not have the permission to install new

software and the OS can vary (Linux, Windows, MacOS etc.). A Java application ex-

ported to a runnable JAR file has no requirement of installation and can be executed

by starting it like all other programs. This makes it easy to copy the JAR application

on a USB-stick or to put it in the user’s home directory on the workstation. The object-

orientation of Java is another important factor. I wanted to create everything close to

reality with objects having a state and properties which they can handle themselves.

The logic and event handling is outsourced as much as possible to keep the UI small

and understandable.

5.2 JavaFX

JavaFX is a cross-platform framework for the development of Java applications. It

was developed by Sun Microsystems (now Oracle Corporation) and released in 2008.

With this framework the separation of interactive, multimedia and graphic compo-

nents is semi pre-implemented due to the MVVM-pattern. Since 2014 JavaFX has

intended to replace the GUI15 toolkits Swing and AWT16 until then most used.

13 JVM - Java Virtual Machine
14 WORA stands for “Write Once, Run Anywhere”
15 GUI – Graphical User Interface
16 AWT – Abstract Window Toolkit: GUI widget toolkit like Swing

Used Technologies

22

5.2.1 MVVM

The in JavaFX implemented architectural pattern17 is a variation of the MVC-pattern.

It separates the layout and appearance from the back-end18 logic. It consists of three

components, namely model, view and view model. The model is the content and data-

handling component. It manages data modifications and validates new data. It can

be developed completely detached from the rest of the application and is reusable.

The view-component represents the UI. Compared to the MVC-pattern there is a dat-

abinding among view and view model for all manipulations, event handlings and

changes in the interface. The view model serves as a connector containing the com-

plete UI-logic but does not know a single information of the view. JavaFX outsources

the description of the interface to FXML files, which represent the view. The view

model is a controller class with all event-handling-listeners defined in the first element

of the FXML file. The main class is now empty except for the initialisation of the

FXMLloader, which initialises the controller itself.

5.2.2 JavaFX vs Swing

Originally, I decided to write the application with the Swing API. However, there was

a huge problem regarding the drawing process. In Swing, each object has a quadratic

hitbox19 and those objects are not rotatable. This is the reason why it is almost impos-

sible to handle precise mouse events. As a first attempt, I tried to write mathematical

functions to calculate the real hitbox. I failed at the point where many items did not

17 Architectural patterns are design patterns for the top-level organisation of interactions and compo-
nents in a software solution

18 Back-end – usually cares about business logic and data storage
19 Hitbox – shape around objects for collision detection

Figure 21: MVVM-pattern

Used Technologies

23

intersect each other not directly but only their oversized hitboxes did. I found the al-

ternative JavaFX, which works with a different kind of paint method and fits the hit-

boxes directly to the shapes of the objects.

5.2.3 FXML

JavaFX provides two different types of UI-development. One option is to add all knots

in their superior knots as it is done in Swing. The other option is to describe the inter-

face in a FXML file. FXML is an XML-based user interface markup language created

by Oracle Corporation20. To create a valid XML file, it is important that the used com-

ponents are imported at the beginning of the file.

Figure 22: Imports and controller definiton in FXML

A root pane, usually an anchor pane which can be easily replaced by any other type

of pane, wraps the rest of the interface. In the root pane, the controller location is

defined. This controller implements the interface Initializable21, which creates an in-

stance of it after loading the FXML file in the main class.

5.2.4 CSS

Cascading Style Sheet or the short name CSS is a frequently used style sheet lan-

guage for markup language documents like HTML, XHTML, XML and SVG. The Ja-

vaFX CSS follows the W3C standards of CSS with the exception of the prefix of “-

fx-”22. There are three ways to set a look and feel for an object. FXML elements have

the style attribute, JavaFX nodes23 (javafx.scene.Node) have a “setStyle” method and

to outsource the style it can be written in an external CSS file whose file path is set

in the main class. I realised that to make the code shorter and understandable it is

20 (W. Unknown 2017)
21 (O. Unknown, Oracle 2015)
22 (Unknown, Oracle 2008, 2015)
23 (Unknown, Oracle 2008, 2015)

Used Technologies

24

better to use a file to outsource CSS code, for objects that appear often and always

have the same style requirement. Therefore, I created an “application.css” file to over-

write the default look of buttons, labels and menus. An important characteristic, which

took me a lot of time to understand and to learn how to handle, is that sub-items do

not communicate their style to their children or sub items. To handle the priorities of

the different setting options Oracle appointed three rules. A style from a user agent

style sheet has lower priority than a value set from code, which has lower priority than

a Scene or Parent style sheet. Inline styles have highest precedence. Style sheets

from a Parent instance are considered to be more specific than those styles from

Scene style sheets.24 To understand the functions and capabilities of JavaFX CSS

tutorials helped me a lot.25

Figure 23: Differnt ways to set CSS styles

5.3 XML

Extensible Markup Language is a markup language which serves for structured de-

scriptions of hierarchic organised data in form of a text file.26 I used the XML standard

to save the drawings. This guarantees that it is a valid file format and due to this

readable with any kind of XML parser. Alternatives to XML would be JSON or setting

up a relational database with tables for each kind of element. For this type of data,

the effort would be too big because the data model in ChemStruct is pretty simple. If

24 (Unknown, Oracle 2008, 2015)
25 (Ebbers 2016)
26 (Wild, XML: Einführung in XML kein Datum)

Used Technologies

25

later on the project is extended I will probably use Hibernate, a framework for object-

related requests.

5.4 JUnit

For testing the functionalities of the single components, I used the testing framework

JUnit27. Thanks to this tool I fixed several bugs such as the right way to set the coor-

dinates of objects. JUnit guarantees that all functionalities can stand alone by exe-

cuting the tests in a random order if there are no exceptional annotations.

27 (Unknown, Wikipedia 2017)

Conclusion

26

6. Conclusion

6.1 Restrictions

Due to a lack of time I had to cut some features. For the time being the function to

change the element type of atoms has been denied. The user can only draw carbon

bounds. Another cutback is the limitation of editable files to one if the user does not

open the program more than one time.

6.2 Possible expendabilities

In the near future, I would like to implement the features: copy and paste function for

objects, multi-window-handling or generally a possibility to open more than one file,

a raster function for the drawing pane and the support of multiple languages.

Appendix

27

7. Appendix

https://en.wikipedia.org/wiki/Structural_formula

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Circle.html

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Line.html

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

https://en.wikipedia.org/wiki/Java_hashCode()

https://en.wikipedia.org/wiki/Toolbar

https://material.io/guidelines/style/color.html#color-color-palette

http://code.makery.ch/library/javafx-8-tutorial/part5/

http://code.makery.ch/library/javafx-2-tutorial/part5/

https://material.io/guidelines/style/color.html#color-color-tool

https://en.wikipedia.org/wiki/Spiral_model

https://de.wikipedia.org/wiki/Spiralmodell

http://istqbexamcertification.com/what-is-spiral-model-advantages-disadvantages-

and-when-to-use-it/

http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/is-management/Sys-

tementwicklung/Vorgehensmodell/Spiralmodell

https://de.wikipedia.org/wiki/Eclipse_(IDE)

https://en.wikipedia.org/wiki/Eclipse_(software)

https://de.wikipedia.org/wiki/Dropbox

https://owncloud.org/

http://www.oracle.com/technetwork/java/javase/downloads/sb2download-

2177776.html

http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-

2157684.html

https://en.wikipedia.org/wiki/Notepad%2B%2B

https://de.wikipedia.org/wiki/JUnit

https://en.wikipedia.org/wiki/JUnit

https://en.wikipedia.org/wiki/Structural_formula
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Circle.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Line.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
https://en.wikipedia.org/wiki/Java_hashCode()
https://en.wikipedia.org/wiki/Toolbar
https://material.io/guidelines/style/color.html#color-color-palette
http://code.makery.ch/library/javafx-8-tutorial/part5/
http://code.makery.ch/library/javafx-2-tutorial/part5/
https://material.io/guidelines/style/color.html#color-color-tool
https://en.wikipedia.org/wiki/Spiral_model
https://de.wikipedia.org/wiki/Spiralmodell
http://istqbexamcertification.com/what-is-spiral-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-spiral-model-advantages-disadvantages-and-when-to-use-it/
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/is-management/Systementwicklung/Vorgehensmodell/Spiralmodell
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon/is-management/Systementwicklung/Vorgehensmodell/Spiralmodell
https://de.wikipedia.org/wiki/Eclipse_(IDE)
https://en.wikipedia.org/wiki/Eclipse_(software)
https://de.wikipedia.org/wiki/Dropbox
https://owncloud.org/
http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
https://en.wikipedia.org/wiki/Notepad%2B%2B
https://de.wikipedia.org/wiki/JUnit
https://en.wikipedia.org/wiki/JUnit

Appendix

28

https://en.wikipedia.org/wiki/Paint.NET

https://en.wikipedia.org/wiki/Java_(programming_language)

https://en.wikipedia.org/wiki/JavaFX

https://de.wikipedia.org/wiki/JavaFX

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

https://de.wikipedia.org/wiki/Architekturmuster

https://en.wikipedia.org/wiki/Architectural_pattern

https://en.wikipedia.org/wiki/Front_and_back_ends

https://de.wikipedia.org/wiki/Model_View_ViewModel

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

https://en.wikipedia.org/wiki/Hitbox

https://en.wikipedia.org/wiki/FXML

http://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm

https://de.wikipedia.org/wiki/Cascading_Style_Sheets

https://en.wikipedia.org/wiki/Cascading_Style_Sheets

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html

https://en.wikipedia.org/wiki/XML

http://code.makery.ch/library/javafx-8-tutorial/part5/

http://code.makery.ch/library/javafx-2-tutorial/part5/

http://www.tutego.de/blog/javainsel/2013/10/deklarative-und-programmierte-ober-

flchen-swing-und-javafx-im-vergleich/

https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrinterJob.html

https://en.wikipedia.org/wiki/Skeletal_formula

https://en.wikipedia.org/wiki/Paint.NET
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/JavaFX
https://de.wikipedia.org/wiki/JavaFX
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://de.wikipedia.org/wiki/Architekturmuster
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Front_and_back_ends
https://de.wikipedia.org/wiki/Model_View_ViewModel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Hitbox
https://en.wikipedia.org/wiki/FXML
http://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm
https://de.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html
https://en.wikipedia.org/wiki/XML
http://code.makery.ch/library/javafx-8-tutorial/part5/
http://code.makery.ch/library/javafx-2-tutorial/part5/
http://www.tutego.de/blog/javainsel/2013/10/deklarative-und-programmierte-oberflchen-swing-und-javafx-im-vergleich/
http://www.tutego.de/blog/javainsel/2013/10/deklarative-und-programmierte-oberflchen-swing-und-javafx-im-vergleich/
https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrinterJob.html
https://en.wikipedia.org/wiki/Skeletal_formula

7.1 Bibliography

Dropbox. Dropbox. kein Datum. https://www.dropbox.com/de/?landing=cntl

(Zugriff am 26. April 2017).

Ebbers, Hendrik. GuiGarage. 09. 02 2016.

http://www.guigarage.com/2016/02/javafx-and-css/ (Zugriff am 16.

April 2017).

Hill, Graham. Chemistry Counts. HODDER AND STOUGHTON, 1987.

Jakob, Marco. code.makery. 25. March 2015.

http://code.makery.ch/library/javafx-8-tutorial/part5/ (Zugriff am 16.

April 2017).

—. code.makery. 08. February 2013. http://code.makery.ch/library/javafx-2-

tutorial/part5/ (Zugriff am 16. April 2017).

Oracle, Unknown. Oracle. 10. 02 2015.

https://docs.oracle.com/javase/8/javafx/api/javafx/print/PrinterJob.html

(Zugriff am 17. April 2017).

—. Oracle. 10. 02 2015.

https://docs.oracle.com/javase/8/javafx/api/javafx/animation/Timeline.h

tml (Zugriff am 18. April 2017).

ownCloud. ownCloud. 2017. https://owncloud.org/ (Zugriff am 26. April 2017).

Unknown. Oracle. 2008, 2015.

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/Node.html#se

tOnZoomFinished-javafx.event.EventHandler- (Zugriff am 16. April

2017).

—. Oracle. 2008, 2015.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-

files/cssref.html (Zugriff am 16. April 2017).

—. Wikipedia. 17. January 2017. https://en.wikipedia.org/wiki/JUnit (Zugriff

am 16. April 2017).

Unknown, Oracle. Oracle. 11. 01 2016.

https://docs.oracle.com/javase/7/docs/api/java/util/prefs/Preferences.ht

ml (Zugriff am 17. April 2017).

Appendix

XXX

—. Oracle. 10. 02 2015.

https://docs.oracle.com/javase/7/docs/api/java/util/prefs/Preferences.ht

ml (Zugriff am 18. April 2017).

Unknown, Wikipedia. Wikipedia. 14 April 2017.

https://en.wikipedia.org/wiki/FXML (accessed April 16, 2017).

Wiki. Wikipedia. 17. January 2017. https://en.wikipedia.org/wiki/JUnit (Zugriff

am 26. April 2017).

Wild, Michael. „eXtensible Markup Language (XML).“ Rohdaten. kein Datum.

—. „XML: Einführung in XML.“ Moodle. kein Datum.

http://moodle.tfobz.net/pluginfile.php/624/mod_resource/content/2/K01

EinfuehrungInXML.pdf (Zugriff am 16. April 2017).

